Aprendizado de Máquina aplicado a Grafos de Conhecimento

Daniel N. R. da Silva, Artur Ziviani e Fabio Porto dramos, ziviani, fporto@Incc.br

Machine Learning for Knowledge Graphs

Laboratório Nacional de Computação Científica

http://dexl.lncc.br/

- Big Data Management
- Complex Networks
- Computational Reprodutibility
- Knowledge Bases
- Machine Learning
- Scientific Workflows

LNCC: master and doctoral degrees on Computational Modeling (a.k.a. Scientific Computing) - CAPES 6.

Acknowledgements:

Helpul Links: https://www.lncc.br/~ziviani/papers/Texto-MC1-SBBD2019.pdf https://github.com/dnasc/knowledge-graphs

Outline

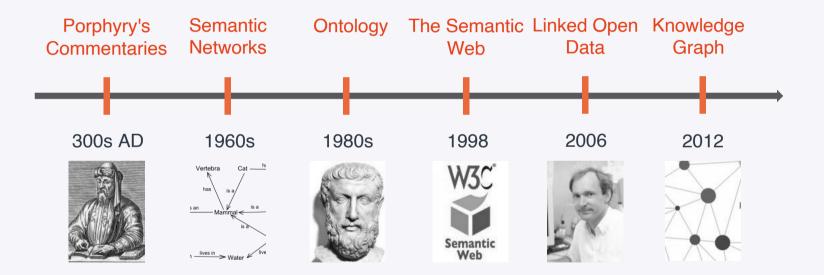
Introduction and Motivation Data Models and Systems KG Tasks Intro Break KG Construction KG Completion **Final Remarks**

04 to 20 (25 min) 21 to 25 (10 min) 26 to 29 (10 min) 15 min 30 to 38 (20 min) 39 to 65 (30 min) 66 to 69 (10 min)

The third (current) rise of AI

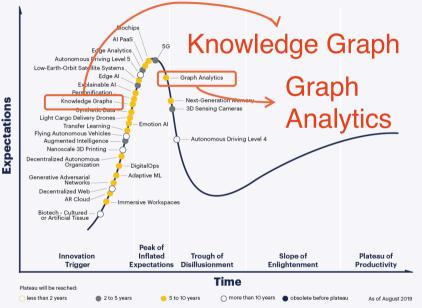
Deng, Li. Artificial Intelligence in the Rising Wave of Deep Learning: The Historical Path and Future Outlook [Perspectives]. IEEE Signal Processing Magazine. 2018.

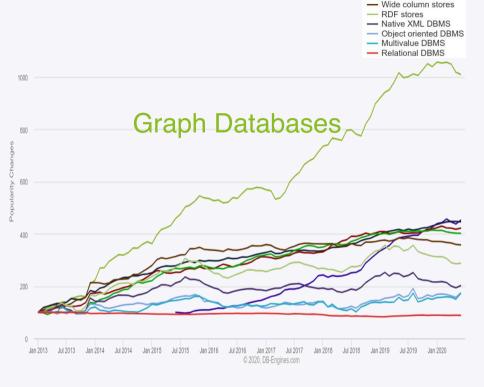
Knowledge Representation and Reasoning



Chein, M. and Mugnier, M-L. Graph-based Knowledge Representation: Computational Foundations of Conceptual Graphs. Springer. 2008. Davis, R. What Is a Knowledge Representation? Al Magazine. 1993.

Gartner Hype Cycle for Emerging Technologies, 2019





https://www.gartner.com/smarterwithgartner/5-trends-appear-on-the-gartner-hype-cycle-for-emerging-technologies-2019/ https://db-engines.com/en/ranking_categories Graph DBMS
 Time Series DBMS
 Document stores
 Key-value stores
 Search engines

Knowledge Graph: What

No single formal definition, but it

Keeps real world entities.

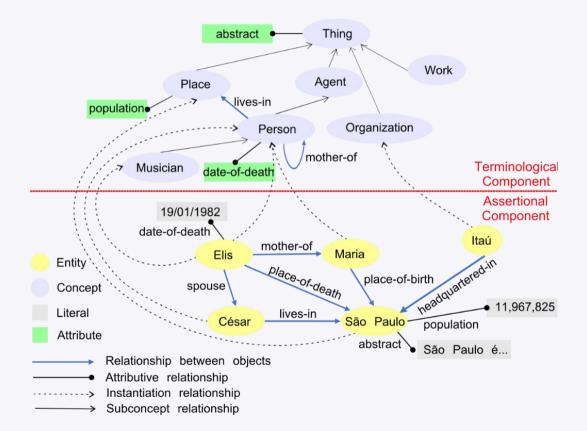
Provides relationships between them.

Networked representation for knowledge

May contain constraints and rules (ontology or schema).

Enables machine reasoning to infer unobserved knowledge.

Knowledge Graph: What



Knowledge Graph: Keywords and Areas

Keywords:

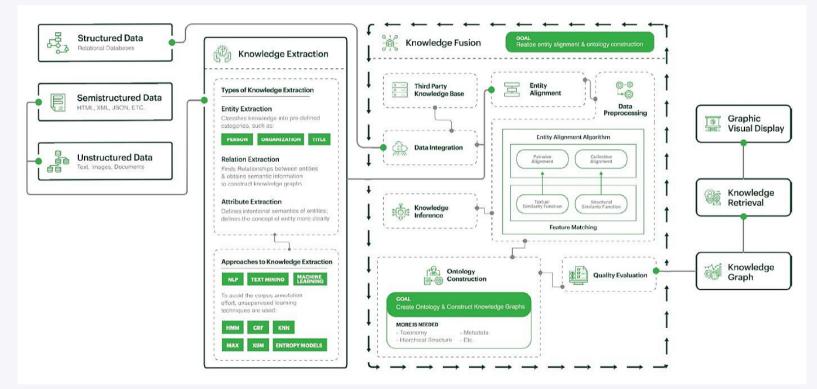
Graph database & triplestores, heterogeneous information networks, ontology, semantic networks, knowledge bases, knowledge based system.

Areas:

Artificial Intelligence: Knowledge Representation & Reasoning, Machine Learning, Natural Language Processing & Understanding.
Data Management: Data Integration, Data Modeling, and Information Retrieval.

Knowledge Graph: Examples

Knowledge Graph Cycle



Knowledge Graphs: Why

Conversational Agents

Data integration

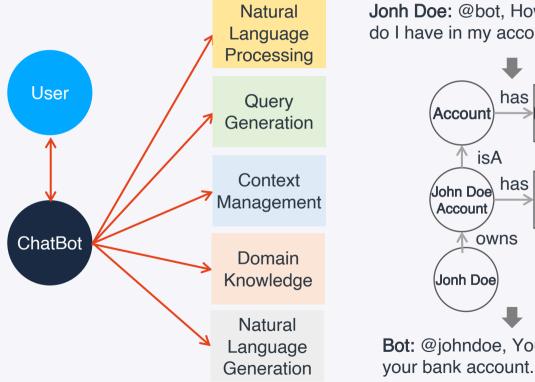
Fact checking and fake news detection

Question Answering

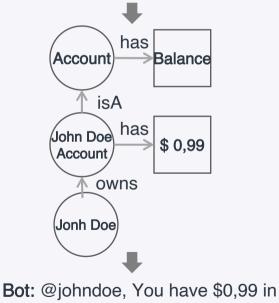
Recommender Systems

Search Engines

Conversational Agents



Jonh Doe: @bot, How much money do I have in my account?



Data Integration: Covid19

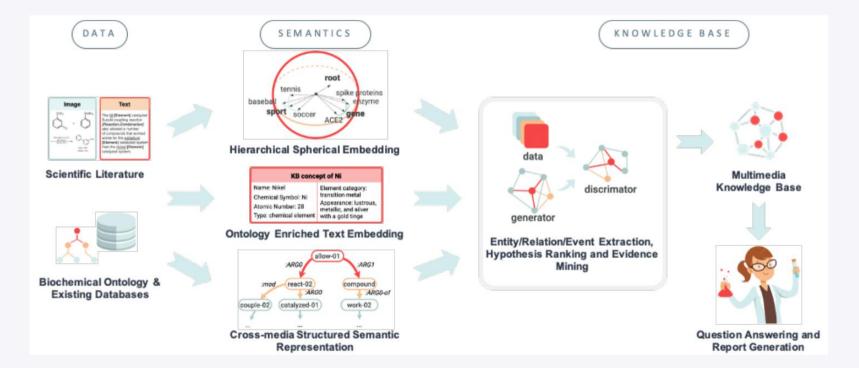
Data siloed: different databases, identifiers, formats, and licenses.

April 28th up to June 13th: 120K+ papers published on Pubmed related to Covid: **Quantity and Quality Challenges.**

Drug repurposing (a.k.a. repositioning, reprofiling, or re-tasking): investigating existing drugs for new therapeutic purposes: Minoxidil (Hypertension => Hair Loss), Aspirin (Analgesia => Colorectal Cancer).

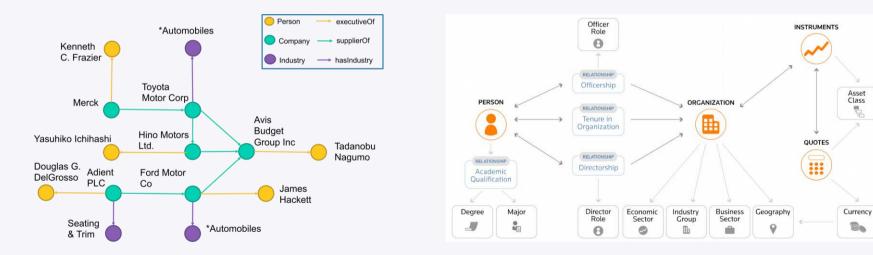
Pushpakom, S, . et al. **Drug repurposing: progress, challenges and recommendations.** Nature reviews Drug discovery 2019. Reese J., et al. **KG-COVID-19: a framework to produce customized knowledge graphs for COVID-19 response**. bioRxiv. 2020. Wang, Q., et al. **COVID-19 Literature Knowledge Graph Construction and Drug Repurposing Report Generation.** arXiv. 2020. https://covidgraph.com/

Data Integration: Covid19



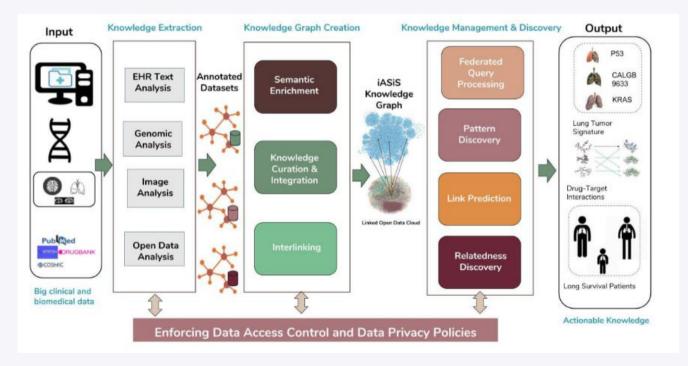
Data Integration: Financial Markets

Bloomberg and Thomson Reuters (Refinitiv)



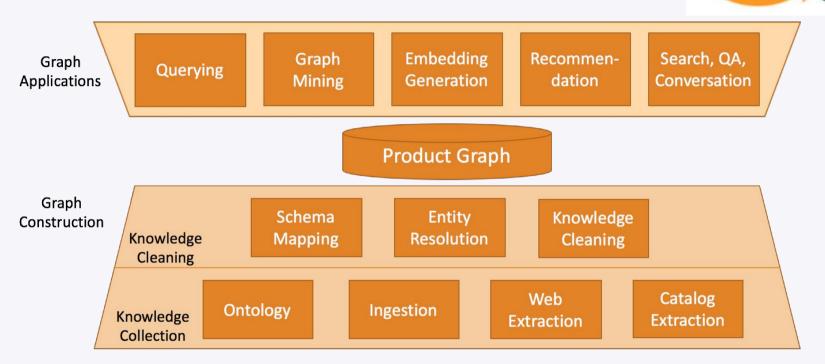
https://speakerdeck.com/emeij/understanding-news-using-the-bloomberg-knowledge-graph https://permid.org/

Data Integration: Personalized Medicine



iASiS: Big Data to Support Precision Medicine and Public Health Policy. 2017.

Data Integration: Product Graph



Dong, L. Challenges and Innovations in Building a Product Knowledge Graph. KDD 2018.

Dong, L and Rekatsinas, T. Data Integration and Machine Learning: A Natural Synergy. Tutorial presented on SIGMOD 2018, VLDB 2018, and KDD 2019.

produc

Fact Checking and Fake News Detection

Barack Obama secretly practices Islam?

Columbia University

Association of American Universities

Canada

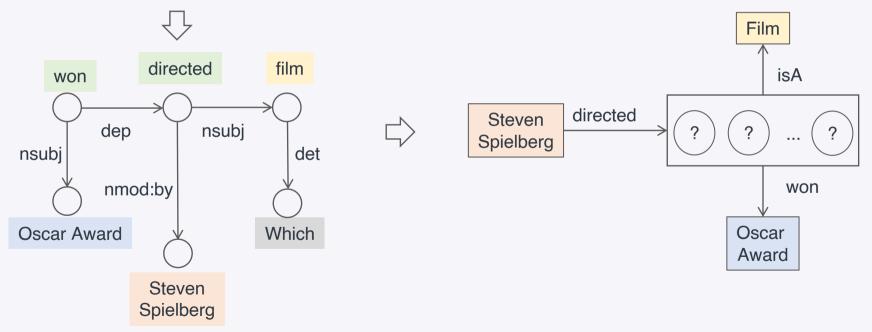
Stephen Harper

Calagary

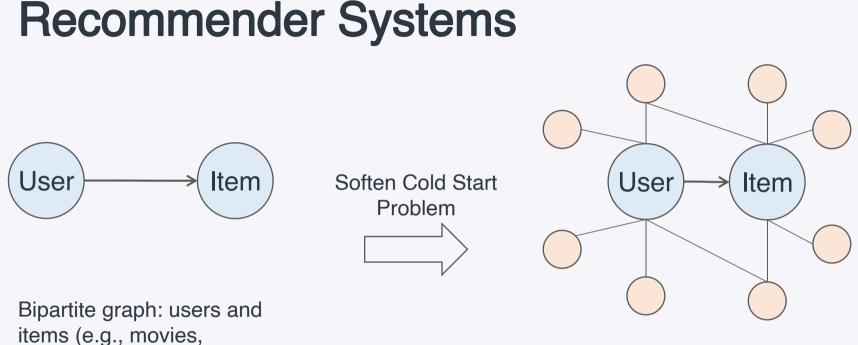
Naheed Neshi

Question Answering

Q: Which films directed by Steven Spielberg won the Oscar Award?



Zheng, W et al. **Question Answering Over Knowledge Graphs: Question Understanding Via Template Decomposition.** PVLDB. 2019. https://nlp.stanford.edu/software/lex-parser.shtml



music, shopping items).

Knowledge Graph

Search Engines

About 796,000,000 results (0.89 seconds)

Top things to do in Rio de Janeiro

Beach life & art

View 15+ more

Copacabana

deco

Christ the Redeemer Iconic Christ

People also search for

More about Rio de Janeiro

Aires

Brasilia

Rio de Janeiro

Municipality in Rio de Janeiro

Rio de Janeiro is a huge seaside city in Brazil, famed for its Copacabana and Ipanema beaches, 38m Christ the Redeemer statue atop Mount Corcovado and for Sugarloaf Mountain, a granite peak with cable cars to its summit. The city is also known for its sprawling favelas (shanty towns). Its raucous Carnaval festival, featuring parade floats, flamboyant costumes and samba dancers, is considered the world's largest.

Weather: 25°C, Wind NW at 5 km/h, 77% Humidity Postal Code: 20000-000

Labeled Property Graph

Graph Databases:

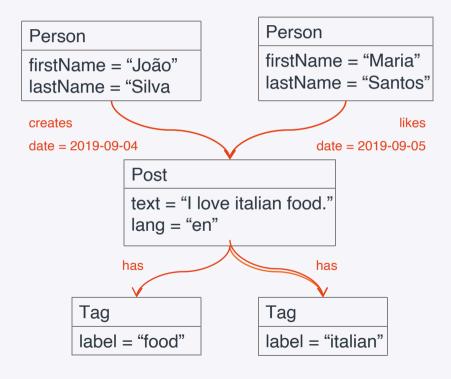
Ex.: Amazon Neptune, DGraph, Neo4J, JanusGraph, Memgraph, and TigerGraph.

Query languages:

Cypher, GCore, GS, Gremlim, and PGQL.

https://aws.amazon.com/neptune/ https://neo4j.com/ https://janusgraph.org/ https://www.tigergraph.com/

Labeled Property Graph



Get the tags associated with Maria's post preference. match (:Person {firstName: "Maria"}) ->[:likes]->(:Post)->[:has]->(t: Tag) RETURN t.label as TagLabel

Resource Description Framework (RDF)

Nodes: Resources, literals or blank nodes

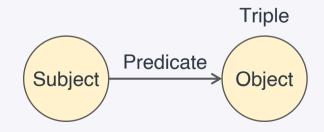
Edges: Predicates (resource)

Literal:

Can be interpreted as datatypes

Encoded as strings

Represent data values



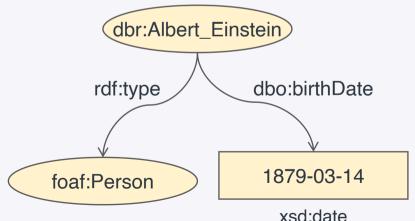
Resource Description Framework (RDF)

IRI/URI (Internationalized/Uniform Resource Identifier) Serialization: JSON-LD, N-Triples, RDF/XML, and Turtle

Query Languages: SPARQL.

@prefix dbr: <http://dbpedia.org/resource>.
@prefix dbo: <http://dbpedia.org/ontology>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.

dbr:Albert_Einstein rdf:type foaf:Person; dbo:birthDate "1879-03-14"^^xsd:date.

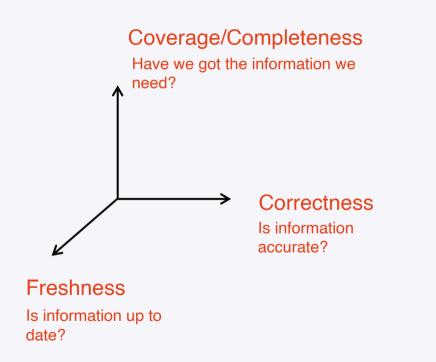


Systems for Knowledge Bases/Graphs

AllegroGraph Atomgraph **Amazon Neptune** Diffbot Grakn MarkLogic Microsoft Cosmos **Ontotext GraphDB** Stardog

https://allegrograph.com/ https://atomgraph.com/ https://aws.amazon.com/neptune/ https://www.diffbot.com/ https://grakn.ai/ https://www.marklogic.com/ https://azure.microsoft.com/en-us/services/cosmos-db/ https://www.ontotext.com/ https://www.stardog.com/

Challenges



Gao, Yuqing. Building a Large-scale, Accurate and Fresh Knowledge Graph. KDD Tutorial 2018.

Tasks

Knowledge Base/Graph Construction: Extract and populate a KB with data extracted from a set of documents.

Knowledge Graph Completion (Reasoning): Infer (and discover) non-observed facts over relevant entitites.

Will not be discussed:

Data / Knowledge Fusion.

Knowledge Graph Correction.

KG Ontology alignment (matching)/ merging.

Named Entity Recognition (NER)

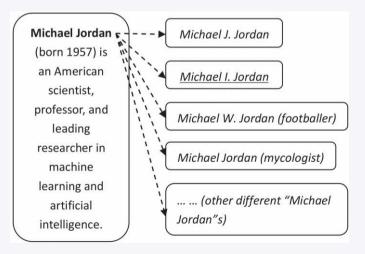
Pedro II of Brazil was the second and last monarch of the Empire of Brazil. He was born in Rio de Janeiro to Emperor Pedro I of Brazil and Empress Maria Leopoldina, who were married at that time.

Entity Linking

Pedro II of Brazil was the second and last monarch of the **Empire of Brazil.** He was born in **Rio de Janeiro** to Emperor Pedro I of Brazil and Empress Maria Leopoldina, who were married at that time. Q217230 Q156774 Q939 Q8678 Q84239

Entity Linking

- Disambiguation with(out) NER
- Candidate Entity Generation
- Candidate Entity Ranking
- Unlinkable Mention Prediction



Abrams, R. Google Thinks I'm Dead (I know otherwise.) 2017. https://www.nytimes.com/2017/12/16/business/google-thinks-im-dead.html?_r=0 32 Shen, W. et al. Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. IEEE Transactions on Knowledge and Data Engineering. 2014

Relation Extraction

Entity Mention

Pedro II of Brazil was the

second and last monarch of the Empire of Brazil. He was

born in Rio de Janeiro to

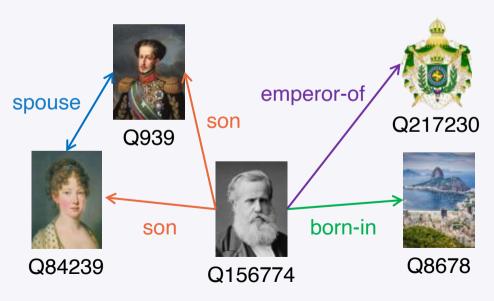
Emperor Pedro I of Brazil and

Empress Maria Leopoldina,

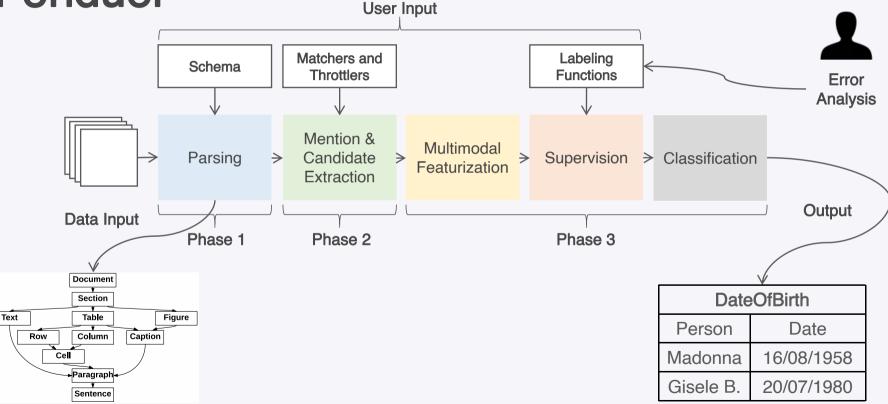
who were married at that time.

Relation Candidate

(Pedro II of Brazil, born-in, Rio de Janeiro)



Fonduer



Wu, S. et al. Fonduer: Knowledge Base Construction from Richly Formatted Data. SIGMOD. 2018. https://fonduer.readthedocs.io/en/latest/

Fonduer

Mention and Candidate Extraction: Functions to return mentions to entities (matchers) and to decrease the number of relationship candidates (throttlers).

Multimodal Featurization: Associate textual, structural, visual and tabular features to relationship candidates.

Supervision and Classification

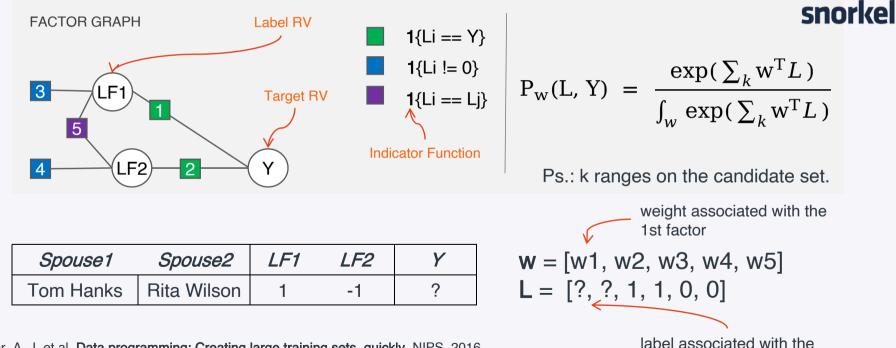
Labeling Function: Yields a label (-1, 0 or 1) for each candidate.

Data Programming: Estimate the true label for each candidate.

Multimodal BiLSTM: Estimate the true label for each candiate considering features.

Data Programming

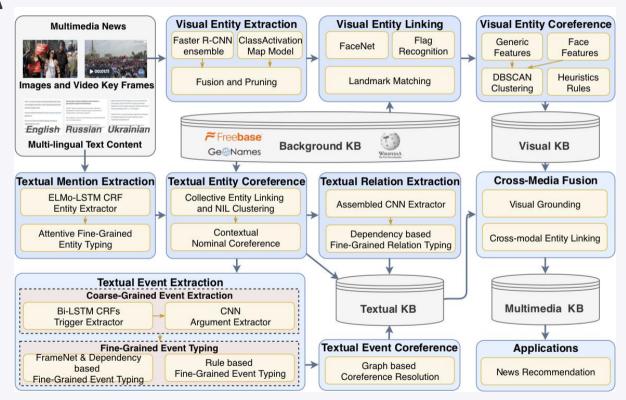
Estimate the ground truth based on labeling functions agreements and disagreements.



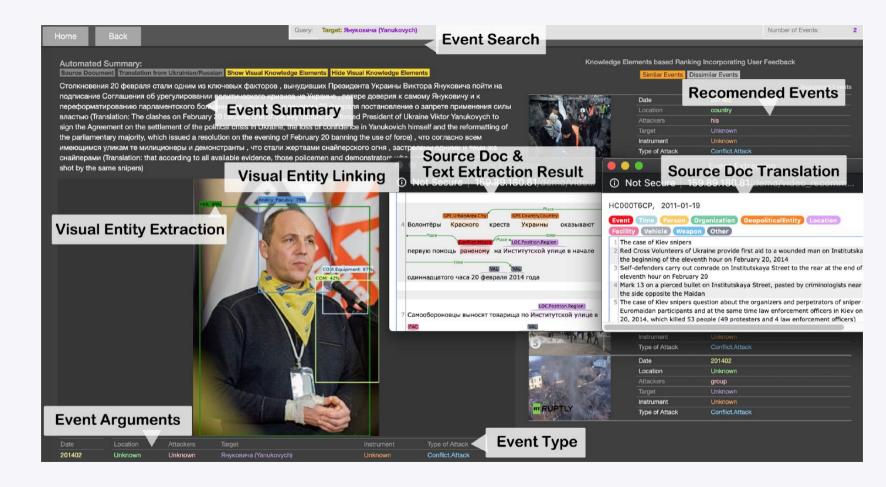
Ratner, A. J. et al. **Data programming: Creating large training sets, quickly.** NIPS. 2016. Ratner, A. J. et al. **Snorkel: rapid training data creation with weak supervision.** VLDB Journal. 2019. https://www.snorkel.org/

2nd factor

GAIA



Li, M. et al. **GAIA: A Fine-grained Multimedia Knowledge Extraction System**. ACL. 2020. http://blender.cs.illinois.edu/software/gaia-ie/



Li, M. et al. **GAIA: A Fine-grained Multimedia Knowledge Extraction System**. ACL. 2020. http://blender.cs.illinois.edu/software/gaia-ie/

Knowledge Graph Completion

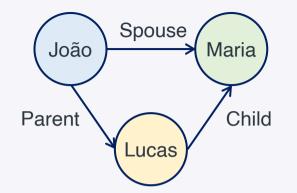
Task		Query Example	Result Example		
	Triple Classification	(Einstein, died-in, USA)?	(Yes, 90%)		
	Tail Prediction	(Elvis Presley, starred-in, ?)	(1, Blue Hawaii, 3.23), (2, Change of Habit, 3.12),		
tion	Head Prediction	(?, starred-in, Casablanca)	(1, Humphrey Bogart, 2.21), (2, Ingrid Bergman, 2.01),		
Prediction	Relation Prediction	(Einstein, ?, Germany)	(1, born-in, 5.01), (2, died-in, 1.23),		
Link	Attribute Prediction	(Obama, nationality, ?)	(1, american, 2.21), (2, kenian, 1.02),		
	Entity Classification	(Michael Jackson, isA, ?)	(1, singer, 6.20), (2, composer, 5.22),		

(ranking, answer, score)

Relational Machine Learning

Model Class	Triples are
Probabilistic Graphical Models	Interdependent.
Graphical Feature Model	Independent given observed features.
Latent Feature Models	Independent given latent features.

Maximilian, N. A review of relational machine learning for knowledge graphs. IEEE. 2016.



(Lucas, child, João)?

Possible Triples: Not observed + Observed Triples

(João, Spouse, João) (João, Spouse, Maria) (João, Spouse, Lucas) (João, Parent, João) (João, Parent, Maria) (João, Child, João) (João, Child, Maria) (João, Child, Lucas) (Maria, Spouse, João) (Maria, Spouse, Maria) (Maria, Spouse, Lucas) (Maria, Parent, João) (Maria, Parent, Maria) (Maria, Parent, Lucas) (Maria, Child, João) (Maria, Child, Maria) (Maria, Child, Lucas) (Lucas, Spouse, João) (Lucas, Spouse, Maria) (Lucas, Spouse, Lucas) (Lucas, Parent, João) (Lucas, Parent, Maria) (Lucas, Parent, Lucas) (Lucas, Child, João) (Lucas, Child, Maria) (Lucas, Child, Lucas)

Markov Logic Networks

Syntax: Weighted first-order formulas Semantics: Templates for Markov Nets Inference: Logical and Probabilistic Learning: Statistical and Inductive Logical Programming

Set of pairs (Fi, wi):

Fi: First-order logic formula;

wi: A real number (weight).

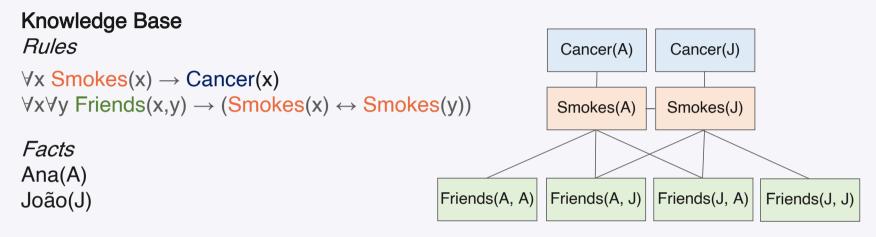
ni: Number of satisfied groundings of Fi in y (possible world).

Probabilistic Graphical Model:

One node (random variable) for each grounding atom.

Edges between nodes appearing at the same grounding formula.

Markov Logic Networks



$$P(\mathbf{Y} = \mathbf{y}) = \frac{1}{Z} \exp\left(\sum_{i} w_{i} n_{i}(\mathbf{y})\right) \qquad Z = \sum_{\mathbf{y}} \exp\left(\sum_{i} w_{i} n_{i}(\mathbf{y})\right)$$

Rule (feature) weights Number of times the rule
is satisfied in the world y.

Richardson, M. and Domingos, P. Markov Logic Networks. Machine Learning. 2006.

Path Ranking Algorithm

Random walks of bounded length.

Feature Extraction

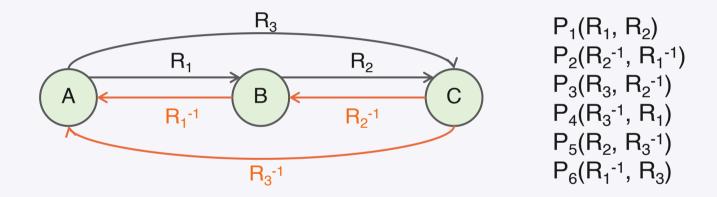
Build feature vectors for triples.

Vectors are based on relation paths Pj(R1,...,Rn).

Training:

Train an off-the-shelf machine learning model.

Relation Paths and Feature Extraction



Feature Vector of (A, R3, C): Probabilities of reaching C from A by following given relation paths: [1/4, 0, 0, 0, 0, 0]

Other Approaches

Graphical Feature Models

Rule Mining (aka Association Rule Learning): RuleN, Rudik, AnyBURL, AMIE-3.

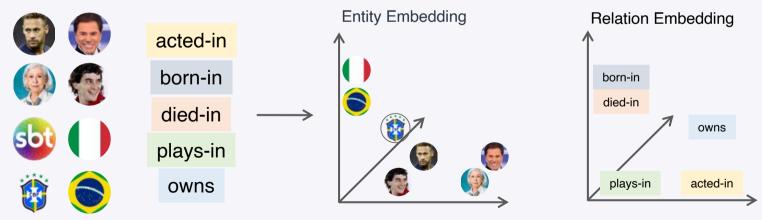
Probabilistic Graphical Models

Probabilistic Soft Logic (Hinge Markov Random Fields).

Meilicke, C. et al. Fine-Grained Evaluation of Rule and Embedding-Based Systems for Knowledge Graph Completion. ISWC 2018. Ortona, S. et al. RuDiK: Rule Discovery in Knowledge Bases. PVLDB 2018. Meilicke, C. et al. Anytime Bottom-Up Rule Learning for Knowledge Graph Completion. IJCAI 2019 Lajus, J. et al. Fast and Exact Rule Mining with AMIE 3. ESWC 2020. Bach, SH. et al. Hinge-Loss Markov Random Fields and Probabilistic Soft Logic. JMLR 2017.

Knowledge Graph Embedding (KGE)

Embed components of a Knowledge Graph including entities and relations into continuos vector spaces, so as to simplify the manipulation while preserving the inhrent structure of the KG.



Wang, Q. et al. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Transactions on Knowledge and Data Engineering. 2017. 47 Espato, A. Innovations in Graph Representation Learning. 2019. https://ai.googleblog.com/2019/06/innovations-in-graph-representation.html.

Anatomy of a KGE Model

Knowledge Graph (KG)

Triple corruption strategy (e.g., negative sampling)

Cost (and loss) function

Scoring function for a triple

Optimization algorithm

```
Input: Observed triplets T, number of training epochs e, batch size b, number of corruptions c, model \mu_{\Theta}, and cost function \mathcal{J}.
```

INITIALIZE PARAMETERS Θ .

```
for i = 1, ..., e do
```

```
T_i \leftarrow T
```

while $|T_i| \neq 0$ do

 $T^+ \leftarrow \mathsf{SAMPLE}(T_i; b).$

 $B \leftarrow \bigcup_{t \in T^+} \langle t, \mathsf{CORRUPT}(t; c) \rangle.$

Update model parameters according to $\nabla_{\Theta} \mathcal{J}(B)$.

 $T_i \leftarrow T_i \setminus T^+$

end while

end for

Triplet Corruption

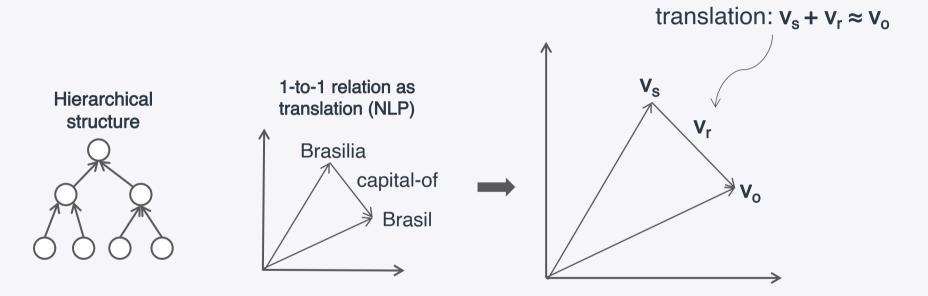
KGs usually don't include negative assertions.

- Manually label a set of negative examples.
- Use rules and constraints expressed in the KG.
- **Negative Sampling:** Sample triples from the unobserved set of possible triples.

(s, r, o) => (s, r, ?), (?, r, o)

Replace ? with a random entity such that the resulting triple isn't in the KG.

TransE



TransE

Constraints on entity embedding: Prevent learning trivial representations.

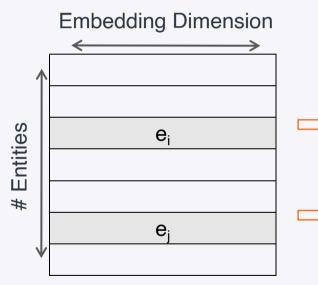
Limitations on dealing with 1-N, N-1, N-M relations.

$$\phi_{(s,r,o)}^{\text{TransE}} := \|\mathbf{v}_s + \mathbf{v}_r - \mathbf{v}_o\|$$

V"Maryl Streep" + V"starred-in" = V"Death becomes her" V"Maryl Streep" + V"starred-in" = V"Doubt" Movies are very different: cast, genre, director, etc.

Bordes, A. et al. Translating Embeddings for Modeling Multi-relational Data. NIPS. 2013.

Shallow and Deep Models



Lookup Table

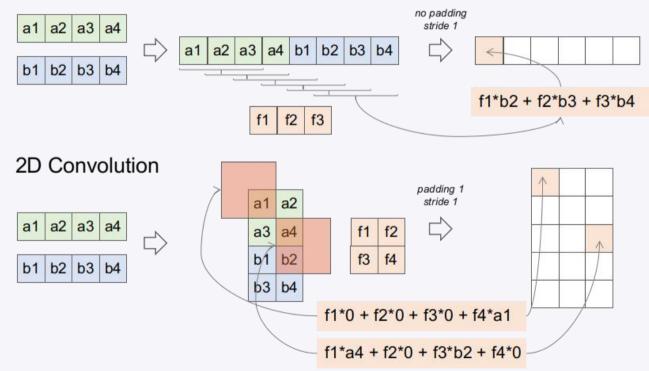
Shallow Models

- Representation expressiviness depends on the embedding dimension.
- Transductiveness.

Deep models

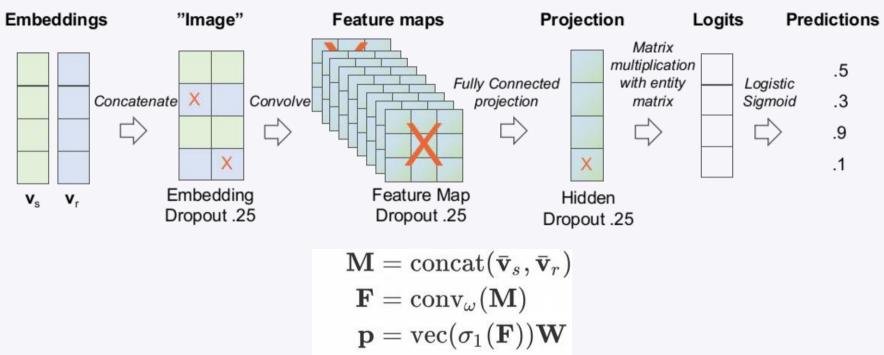
- Overfitting.
- Increase in time and space complexity.

ConvE 1D Convolution



Dettmers, T. et al. Convolutional 2D Knowledge Graph Embeddings. AAAI. 2018.

ConvE



 $ext{score} = \langle \sigma_2(\mathbf{p}), \mathbf{v}_o
angle$

Dettmers, T. et al. Convolutional 2D Knowledge Graph Embeddings. AAAI. 2018.

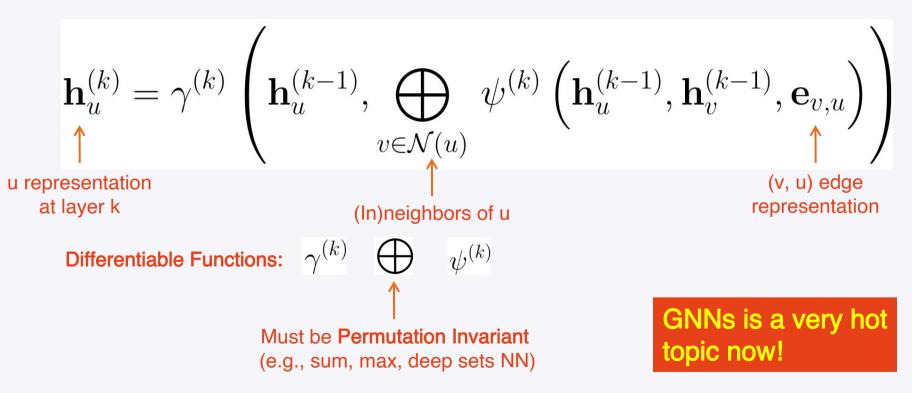
Graph Convolution



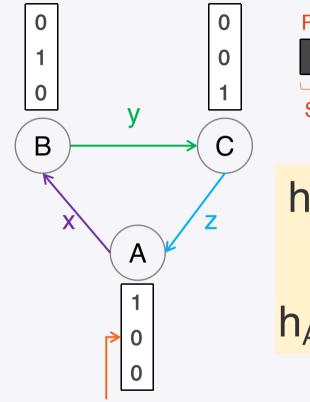
Generalize the operation of *convolution* from grid data to graph data.

Main idea: Learn a representation for a node taking into account its neighbors representations.

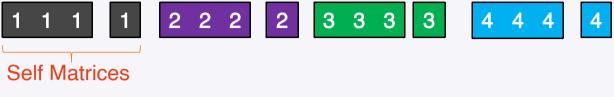
Differentiable message-passing framework

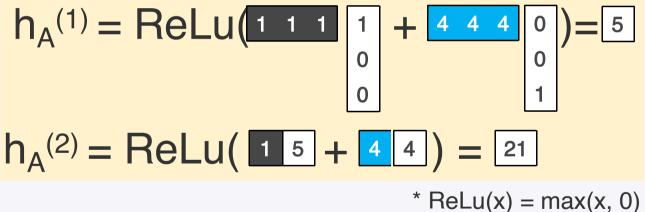


Kipf, T. N and Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. ICLR. 2017. Schlichtkrull, M. et al. Modeling Relational Data with Graph Convolutional Networks. ESWC. 2018.



Relation Matrices for 1 and 2 layer, resp.





Initial Representation One Hot Encode

Schlichtkrull, M. et al. Modeling Relational Data with Graph Convolutional Networks. ESWC. 2018.

Attributive Relations and handling literals

KGs often include:

Numerical attributes: e.g., ages, dates, financial, and geoinformation.

Textual attributes: e.g., names, descriptions, and titles.

Images: e.g., profile photos, flags, and posters.

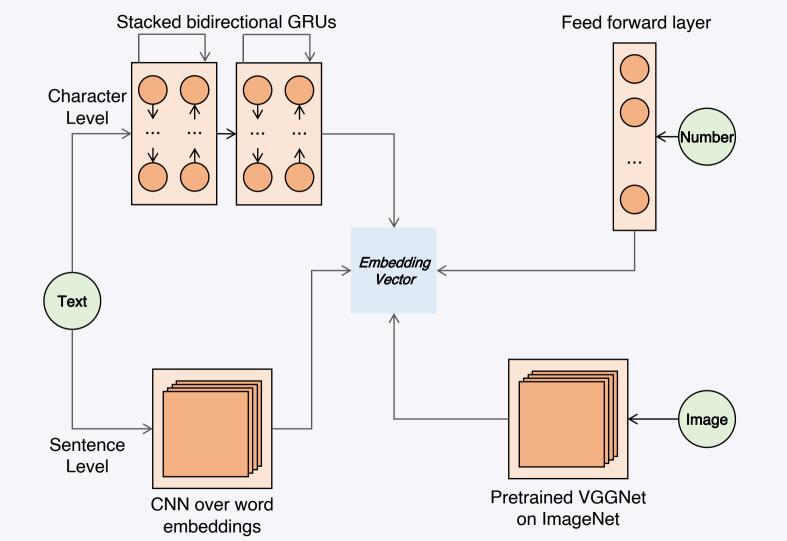
Useful for entities with few relationships

Naive Strategy: regard attributes as entities.

MKBE: Multimodal Knowledge Base Embeddings

Compositional encoding component: Different neural encoders for the variety of observed data.

Embedding Multimodal Data: Structured knowledge, numerical, text, and images.



Ontology Usage Example: JOIE

Instance-view, ontology-view, and cross view.

Cross-view association model:

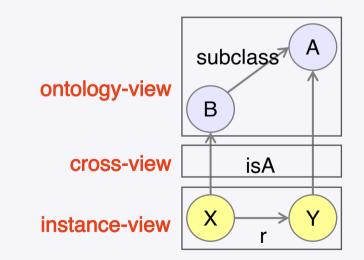
Cross-view grouping (CG).

Cross-view transformation (CT).

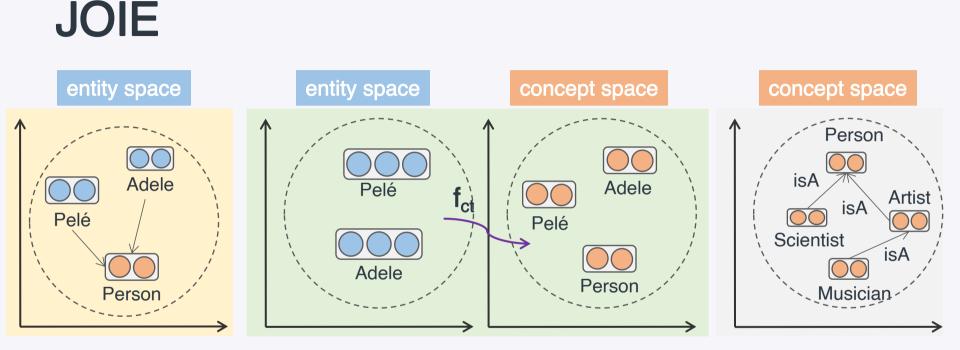
Intra-view model:

Default. Hierarchy-aware.

Specific Cost Functions.



Pezeshkpour, P. et al. Universal Representation Learning of Knowledge Bases by Jointly Embedding Instances and Ontological Concepts. 61 KDD 2019.



1. An entity vector should be encompassed by its class vector radius. 2. The model should be capable of mapping the entity space into the concept space.

3. The concept space should reflect the concept hierarchical structure.

Knowledge Hypergraphs

Triples often oversimplifies the complex nature of the data, in particular for hyper-relational data.

Retified Representation:

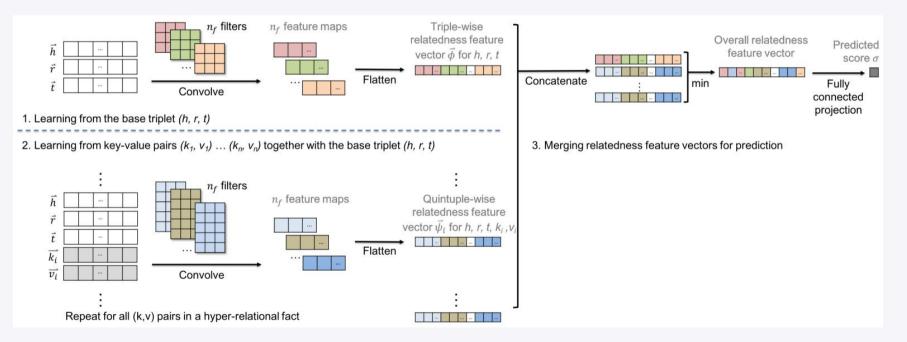
(Marie Curie, **educated-at**, University of Paris) ↑↑

[academic-major: Physics]
[academic-degree: Master of Science]

Hyper-relational representation education subject: Marie Curie object: University of Paris major: Physics degree: Master of Science

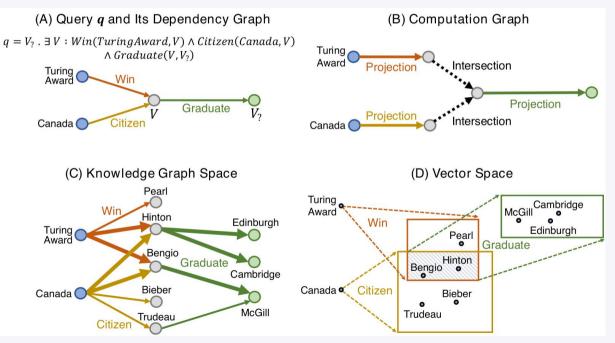
HINGE

Triple (h, r, t) is associated with n key-value pairs (ki, vi)



Beyond Triplet Reasoning

What about answer complex KG queries on vector space by embedding logical operators? **Why**: subgraph matching may be exponential and partially observed data.



Ren, H. et al. Query2box: Reasoning over Knowledge Graphs in Vector Space Using Box Embeddings. ICLR 2020. Hamilton, et. al. Embedding Logical Queries on Knowledge Graphs. NIPS 2018.

Conferences

Artificial Intelligence:

ΑΑΑΙ	ECML PKDD	ICLR			
ICML	IJCAI	NIPS			
Data Management:					
CIKM	ESWC	KDD	SIGMOD PODS		
SIGIR	VLDB	WSDM	www		

Natural Language Processing:

ACL EMNLP

- Automated Knowledge Base Construction.
- Knowledge Graph Conference.
- International Workshop on Challenges and

Experiences from Data Integration to

Knowledge Graphs.

- Workshop on Knowledge Graph Technology and Applications.
- Workshop on Deep Learning for Knowledge Graphs.

KGE libraries and Systems

AmpliGraph	Tensorflow	https://ampligraph.org/
DeepGraphLibrary	MXNet/Gluon, PyTorch, Tensorflow	https://www.dgl.ai/
Grakn KGLIB	Tensorflow	https://github.com/graknlabs/kglib
Graph Nets	Sonnet	https://github.com/deepmind/graph_nets
OpenKE	PyTorch	http://openke.thunlp.org
LibKGE	PyTorch	https://github.com/uma-pi1/kge
Pykg2vec	Tensorflow	https://github.com/Sujit-O/pykg2vec
PyKEEN	PyTorch	http://pykeen.readthedocs.io
PyTorch-BigGraph	PyTorch	https://torchbiggraph.readthedocs.io/en/latest
PyTorch Geometric	PyTorch	https://pytorch-geometric.readthedocs.io/en/latest/
StellarGraph	Tensorflow	https://www.stellargraph.io/ 67

KB / KG construction

Research

- Continuously learning and self-correcting systems.
- Entity disambiguation and managing identity.
- Heterogeneous and multimodal information.
- KBC in specific domains.
- Knowledge graph alignment.
- Managing operations at scale.
- Multi-language knowledge bases.
- Virtual knowledge graphs.

KG Reasoning

Research

- Compare/Combine KGE to/with other approaches (e.g., PSL + Rule Mining).
- Dynamic Negative Sampling.
- Embed other structures: graphlets, paths, motifs, **queries**, etc.
- Few shot Learning.
- KGE and the lack of symbolic structures (e.g., rules and restrictions).
- KGE consistency (e.g., embed formal knowledge).
- KG sparsity and uncertainty.
- KG temporal and spatial dynamics.
- Inductive vs. transductive learning.
- Prediction calibration of KGE models.
- Representation: hypergraphs (n-ary relations), meta-properties, multidimension KGs.

Aprendizado de Máquina aplicado a Grafos de Conhecimento

Daniel N. R. da Silva, Artur Ziviani e Fabio Porto dramos, ziviani, fporto@Incc.br

Machine Learning for Knowledge Graphs

Model Training and Evaluation

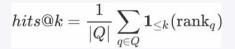
Triple Classification Protocol:

Test the model's ability to discriminate between true and false triples. Triple (s,r,o) is classified as positive if its score exceeds a relationspecific decision threshold (learned on validation data).

Entity Ranking Protocol:

Assess model performance in terms of ranking answers to certain questions.

Evaluation Metrics



 $MRR = rac{1}{|Q|} \sum_{q \in Q} rac{1}{\mathrm{rank}_q}$

Regression, classification and ranking metrics: e.g., Hits@k, Mean Reciprocal Rank (MRR), and Precision Recall Curve.

Test triples:	S	р	ο	score	rank
(Neymar, born-in, Mogi) Entities:	Neymar	born-in	Mogi	0.80	12
Kaká, Neymar, Mogi, and Gama					
avg hits@1 = (1 + 0) / 2 = 0.5 avg mrr = (1 + 1/2) / 2 = 0.75	Neymar	born-in	Gama	0.70	2
	Neymar	born-in	Kaká	0.20	3

