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Abstract. In this paper, we present an optimization of our previous record ex-
traction approach from web pages. The proposed optimization improves the
upper bound from O(nlogn) to O(n) while maintaining the same qualitative re-
sults as before (i.e., no loss in efficacy). We have achieved the following results:
a 47% improvement in runtime efficiency when compared to our previous work
and 95% f-score (same as our previous work).

Resumo. É apresentado, neste artigo, uma otimização realizada em cima de
um trabalho anterior, dos mesmos autores, que propõe uma técnica de extração
de registros estruturados de páginas web. A otimização proposta melhora a
complexidade de tempo de O(nlogn) para O(n) enquanto mantém os mesmos
resultados qualitativos apresentados anteriormente (i.e., sem perda de eficácia).
Os seguintes resultados foram obtidos: melhoria de 47% no tempo de execução
quando comparado com o trabalho anterior e f-score de 95% (mesmo obtido no
trabalho anterior).

1. Introduction
Automatically extracting semi-structured data from the web is a very important and dif-
ficult task. Once extracted, this structured data can be used in a number of applications
(e.g., price comparison, semantic keyword search, metasearch, etc.). The difficulty in ex-
tracting this data lies in the fact that it is published in very diverse and loosely structured
formats in various domains, it is intended for a human audience, hence it is not trivial to
automatically extract it.

There is quite a lot of research on the subject. Some proposals try to find
similar neighboring subtrees in the document [Liu et al. 2003]; others search for pat-
terns in visual information [Simon and Lausen 2005]. There are also approaches that
target more specific data sources like tabular data formatted with specific HTML
tags[Cafarella et al. 2008]. It is a consensus in the scientific community that the extrac-
tion of structured data from the web is still an open problem[Schulz et al. 2016].

In our previous work[Velloso and Dorneles 2017, Velloso and Dorneles 2019], we
have outlined an approach that extracted structured data from web pages using signal pro-
cessing and machine learning. Here, we go a step further and improve its time complexity.
Whenever dealing with web scale data, efficiency is crucial and any runtime improvement
is relevant, but it is especially relevant when it is an asymptotic improvement.

From an engineering point of view, whenever we propose a solution to a problem,
we should care a great deal about its feasibility. In computer science, feasibility often
means space and time complexity. Hence, we focus on optimizing our extraction appro-
ach. Our previous work was limited by the time complexity (O(nlogn)) of the fast Fourier



transform. We use the Fourier transform to detect the size and the number of record within
a structured region of a web page. That seemed to be a hard limit to break, but we have
managed to overcome it by avoiding unnecessary computation and circumventing other
issues that emerged as consequence of this optimization (more details on that in Section
4).

The improvement and contribution proposed in this paper is the following:
asymptotic reduction of the time complexity necessary to detect the records within
a structured region and hence reducing overall time complexity. Our previous approach
already outmatched the state-of-the-art with respect to runtime performance and it had
a O(nlogn) time complexity that we now managed to lower to O(n) by avoiding unne-
cessary computation when inspecting a data region’s power spectrum. The result of this
optimization is a 47% gain in runtime keeping the same f-score as our previous approach
(around 95%).

The rest of this paper is organized as follows: Section 2 presents the needed back-
ground and briefly describe our extraction approach; Section 3 describes some of the
relevant related work in this research field; Section 4 details the optimization proposed;
Section 5 compares and discusses the results; Section 6 concludes the paper.

2. Background
In this section, we present a brief description of our previous work. This description is
needed for completeness and to understand what we are proposing to optimize in this
paper. Our previous work tackles the problem of automatically extracting data records
from web pages with the use of signal processing techniques.

The whole process is based on the observation that the structured content of a
document must have at least some structural consistency, even in the presence of noise,
so that it looks somewhat organized to the reader. In other words, the records are laid out
so that it is obvious to the human reader that they are related to each other and they refer
to same subject (or entity). Such an organization necessarily reflects on the structure of
the DOM tree and its style definition and, consequently, on its tag path sequence (TPS)
representation.

Figure 1 depicts the entire process of record extraction proposed in our previous
work. First, the HTML document is parsed into a DOM tree using libtidy (a W3C en-
dorsed HTML cleanup and standardization tool). After this, Step 1 converts the DOM
tree into a TPS; Step 2 divides the TPS into several structured regions; Step 3 identifies
the record boundaries within each region; Step 4 classifies the regions as content or noise
and; Step 5 aligns the records in tabular form. Step 3 (in dark gray color) is the object of
the optimization described in this paper.

In the first step, the web page is converted from a DOM tree into a signal (i.e.,
a sequence, or string, of integer values), this conversion process retains structure infor-
mation from the original document in the form of cycles in the signal; this signal is then
segmented into cyclic subsequences (i.e., subsequences that contain structure); after that,
each subsequence’s power spectrum is analyzed to detect the main period and frequency
present in it, these two values represent average record size and record count, respecti-
vely; after record detection we classify each region as content or noise; in the last step the
detected records are aligned.

To allow the use of signal processing techniques, the document is converted



to a sequence representation as illustrated in Figure 2. Figure 3 shows an exam-
ple of a real web page converted to sequence and its main content region on display.
More details on that are beyond the scope of this paper and we refer the reader to
[Velloso and Dorneles 2017, Velloso and Dorneles 2019].

Figure 1. Extraction system overall diagram.

3. Related Work
We can find relevant works in the research field of web structured extraction dating as
far back as the 90’s. Despite being researched for quite some time now, the problem
of extracting records from web pages is still open. There are many surveys that agree
on this point (e.g., [Sleiman and Corchuelo 2012, Ferrara et al. 2014, Schulz et al. 2016,
Varlamov and Turdakov 2016, Roldán et al. 2019]).

In [Liu et al. 2003, Zhai and Liu 2005, Liu and Zhai 2005, Jindal and Liu 2010,
Shi et al. 2015, Wai et al. 2017], the structured data is detected automatically using tree
edit distance. The records are extracted, mainly, from result/list pages and they are assu-
med to be similar in structure and contiguous on the document.

In [Crescenzi et al. 2001, Kayed and Chang 2009,
Arasu and Garcia-Molina 2003], the extraction is “site oriented”. Several pages
from the same template are required to train the extractor. The algorithm then detects
what is template (i.e., invariant) and what is data (i.e., variant). These approaches can be
used to extracted data from detail pages as well.

In [Guo et al. 2019] the redundancy in search result records is exploited to per-
form extraction in detail pages. Similar to what is done in “site oriented” approaches.

In [Cai et al. 2003, Simon and Lausen 2005, Liu et al. 2009, Grigalis 2013], the
document is fully rendered in a browser and the visual information generated in the pro-
cess is then used to leverage the extraction. The rendering process can be quite computa-
tionally expensive and it is not clear whether this is feasible in a production environment
or even if it is worth exchanging this computation for the results achieved.

In [Cafarella et al. 2008, Wang et al. 2012, Elmeleegy et al. 2011,
Chu et al. 2015, Zhang et al. 2013, Qiu et al. 2015], the information is extracted



- HTML Code
<body>
<table>
<tr><td></td><td></td></tr>
<tr><td></td><td></td></tr>
</table>
</body>

- DOM Tree
body[i=1]
   |
   +--table[i=2]
          |
          +--tr[i=3]
          |   |
          |   +--td[i=4]
          |   |
          |   +--td[i=5]
          |
          +--tr[i=6]
              |
              +--td[i=7]
              |
              +--td[i=8]

- Tag Paths
TPS[1]=1:/body
TPS[2]=2:/body/table
TPS[3]=3:/body/table/tr
TPS[4]=4:/body/table/tr/td
TPS[5]=4:/body/table/tr/td
TPS[6]=3:/body/table/tr
TPS[7]=4:/body/table/tr/td
TPS[8]=4:/body/table/tr/td  

- Tag Path Sequence
TPS = {1,2,3,4,4,3,4,4}
  Σ = {1,2,3,4}

1
32

TPCodei

Figure 2. tag path sequence construction.

from very specific sources like <table>,<ol>,<ul> and specific page templates (e.g.,
top-k lists). The extraction quality is very good, but limited in range since we can not
extrapolate these approaches to other types of structured data, even if the underlying
structure is the same (e.g., a <table> extractor will not work at all in a table formatted
with <div>).

In [Xie et al. 2012, Miao et al. 2009, Velloso and Dorneles 2013,
Fang et al. 2018], a different document representation is used to analyze document
structure: a sequence of tag paths. Converting the DOM tree to a sequence/string
allows the use of different algorithms and at the same time retains most of the document
structure information that we are interested in. In our work we use this same sequence
representation to perform extraction.

Most works cited here either have superlinear time complexity or, when they ne-
glected time complexity analysis, assuming they have linear time complexity, they still
would have a very high constant factor (e.g., some approaches render the document in a
browser engine). We are of the opinion that complexity matters, since it can render an
approach to be impractical/unfeasible.

In our work we have strived to maintain some degree of generality (i.e., avoid ad
hoc and a priori definitions and assumptions) and at the same time achieved good results
by trading off recall for precision (our approach detects records with similar size and
structure and tends to ignore records with disparate sizes). We have avoided rendering the
document in a browser engine and kept the computational complexity within acceptable
boundaries. In this paper we improved this aspect (computational efficiency) even further.

4. Optimization
The time complexity of our approach is dominated by step 3 in Figure 1 (record identifi-
cation) which employs the FFT to detect the records in a structured region. The Fourier



Figure 3. How structured content appears in the sequence (structured re-
gions encircled).

transform allows us to do that by decomposing the input signal into its constituent fre-
quencies, so we can analyze each component and decide if it is relevant or not. The FFT
algorithm has O(nlogn) time complexity and all other steps of our approach have linear
time complexity, so the overall time complexity is O(nlogn).

Although it is not known whether the Fourier Transform can be performed in less
than O(nlogn) time, in our particular situation we can improve the upper bound of our
approach to O(n) time. This is only possible because we search for specific frequencies
in the region’s PSD, so we can avoid unnecessary work (i.e., computing the entire PSD)
and compute only the coefficients we are checking against. We can see this as a “PSD
on demand”, or a “lazy PSD”. For example, in Figure 4 we detected some regularity in
value = 255, it is evenly distributed along the x-axis, so we check its respective frequency
only, there is no need to compute the entire PSD, only a few coefficients around frequency
20 are needed.

Computing only the required coefficients gives rise to another problem: we need
to know if that specific frequency is a peak in the PSD, so how can we compare one
coefficient with the rest of the PSD without entirely computing it? We need a way to
relativize/standardize the coefficients, because there is not much use in knowing only the
raw value of one coefficient (or a few, for that matter). In our previous approach we had
the full PSD at hand, so we were able to standardize the coefficients with respect to the
PSD’s mean and standard deviation. This standardization is what allowed us to decide
when a frequency is relevant or not (i.e., if it represents a peak or not). For a better
understanding, this situation is illustrated in Figure 5 where, if we have the full PSD at
our disposal, we can easily see that frequency 20 represents a peak, because its power is
much higher than the rest of the PSD. On the other hand, if we only have the coefficients
around frequency 20 (lazy PSD), and we know nothing about the rest of the PSD, then we
have nothing to compare against.

Fortunately there is a way to compare one coefficient against the entire PSD
without computing it: Parseval’s Identity (Equation 1). Informally, Parseval’s Identity
states that “the total power of a signal is equal to the power of its spectrum”, so the sum
of a squared signal is equal to the sum of its power spectrum density. That means we can
sum our squared signal (in O(n) time), divide the sum by the signal’s length and we get
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Figure 4. a) The cyclic behaviour of a structured region; b) The PSD of a
structured region.

the PSD’s average value (Equation 2). Knowing the average of the entire PSD we can
now compare a coefficient against it and decide if it is relevant or not. In other words, we
can standardize the coefficients using the average.

∑
|x[n]|2 =

∑
|X[f ]|2 (1)

In Equation 1, x[n] is the structured region (the signal) and X[f ] is the region’s
PSD.

E(PSD) =

∑ |x[n]|2
N

(2)

In Equation 2, E(PSD) is the PSD’s average value, x[n] is the structured region
and N is the region’s length.

Putting it all together, there is no more need to compute the entire PSD, only a few
coefficients and the PSD’s average value. The individual coefficients can be calculated
in O(n) time (using Equations 3 and 4) as well as the PSD’s average (using Equation
2). With these modifications we have effectively lowered the time complexity of our
approach from O(nlogn) time to O(n) time as long as we keep the number of computed
coefficients small (and that is the case, as we show in Section 5 and in Figure 7). If the
number of computed coefficients is allowed to grow proportional to input size, then the
time complexity would degrade to O(n2).

Conceptually there is no difference between the two approaches (full PSD vs sin-
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Figure 5. detecting a peak: full PSD vs lazy PSD.

gle coefficient), both methods calculate the exact same values for all coefficients of a
given signal. In our record detection approach the only significant difference between
the two methods occurs when we standardize the coefficients: when using the entire PSD
we standardize with respect to mean and standard deviation whereas when using single
coefficients we standardize using only the mean. We are doing this because in order to
compute the standard deviation we need the full PSD, and our objective is precisely to
avoid this computation. This difference in standardization seems to be not so significant,
after all, because we were able to achieve the same qualitative results in record detection
using both methods, only much faster when computing only a few number of coefficients.

To shield this modification from the rest of the implementation, avoiding introdu-
cing any kind of interference in runtime analysis, we have used the strategy design pattern
to switch between both implementations (full and lazy PSD) while keeping the rest of the
system identical for a fair comparison. The actual class diagram implemented in our sys-
tem is depicted in Figure 6, showing the respective time complexity of each operation,
depending on the strategy used. Full PSD construction takes O(nlogn) time because that
is where FFT is computed and looking up a coefficient is done in O(1) since they are
all precomputed; lazy PSD construction takes O(n) because that is where we compute
the signal mean, using Equation 2, and looking up a coefficient is done in O(n), using
Equations 3 and 4.

Xk =
N−1∑
n=0

xn · e−2πikn/N (3)



PSD = |Xk|2 (4)

Figure 6. Strategy class diagram and time complexity.

As a bonus, the optimized version of our algorithm is actually easier to implement
since we can just use the naive Fourier transform algorithm (i.e., a direct implementation
of Equation 3) instead of the more complicated algorithm for fast Fourier transform.

Just out of curiosity, a similar approach (Goertzel’s algorithm[Goertzel 1958]) is
used for realtime DTMF tone detection in telephone lines using low end microcontrollers
that can not perform FFT in realtime, but are capable of computing single coefficients in
realtime. Similarly, in this application, there is a limited number of tones to be detected,
and so there is no need to compute the entire transform, only the few coefficients that
represent each tone.

5. Results
We have outlined in Section 4 a way of lowering the time complexity that is inherent to
the FFT by means of lazy computation of PSD. Here we evaluate the results achieved by
doing so.

We have decided to perform this experiment to evaluate the runtime behaviour of
our approach in practical scenarios, not only in theory. We think this is necessary because
the asymptotic behaviour depends on the number of coefficients computed during record
detection. One way to demonstrate that this number is kept constant (i.e., that is does not
grows proportional to input size) is by empirical evaluation.

Table 1 shows our dataset summary. It consists of 327 very diverse HTML do-
cuments, recently collected from various templates, domains and sites. There are 266
documents with both structured content and structured noise and 61 documents that con-
tain only structured noise.

Figure 7 presents a comparison of both approaches: black color represents compu-
ting whole PSD using FFT in O(nlogn) time (the dashed line is a regression and triangles
are individual HTML documents); red color represents lazy PSD computation in O(n)
time.



Table 1. Input dataset summary.

# Content Regions 254 47.65%
# Noise Regions 279 52.35%
Total 533 100%
# Structured documents 266 81.35%
# Unstructured documents 61 18.65%
Total 327 100%

We can see a 47, 17% improvement in runtime when using lazy PSD, compared to
full PSD computation: full PSD takes 70.763s to process our 327 documents dataset and
lazy PSD takes 37.384s. The linear regression is also adherent to the lazy PSD runtime
(R2 = 89.04%), corroborating our claim of O(n) runtime. If the number of computed
coefficients were not constant but proportional to the input size, the actual time complexity
would be O(n2) (i.e., n coefficients computed in O(n)) which is higher than computing
the full PSD.
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Figure 7. Runtime improvement with lazy PSD.

In Table 2, we reproduce the qualitative results obtained in citevelloso2019web
using our extraction approach compared with other, state-of-the-art, approaches found in
the literature. This results have not changed when we applied the optimization proposed
in this paper, indicating that the change in standardization (using only the mean instead of
mean and standard deviation), needed by our optimized algorithm, did not impact the qua-
lity of the results. In Table 2 we have two comparisons: LR is a logistic regression model
trained to classify structured content in a controlled environment; VOT is a heterogeneous
voting ensemble trained to classify structured content in an open environment.We consi-
der an environment to be controlled if the input is guarantee to contain structured content



and, conversely, we consider an open environment to be one where we do not guarantee
the input contains any structure whatsoever. In both cases we have outmatched the other
approaches.

Table 2. Result comparison with other approaches.

Algorithm Prec. Recall F-Score Acc.
TPC[Miao et al. 2009] 90.40% 93.10% 91.73% n/d
MDR[Liu et al. 2003] 59.80% 61.80% 60.78% n/d
Our models[Velloso and Dorneles 2019]
LR 95.45% 95.45% 95.45% 94.80%
VOT 93.02% 90.91% 91.95% 90.91%

6. Conclusion
In this paper we have presented a considerable improvement over our previous work. The
optimization proposed reduced the asymptotical upper bound from O(nlogn) to O(n)
and on an empirical analysis it showed an improvement of more than 47% in runtime
efficiency. We have achieved all this, however, without sacrificing quality, as shown in
the results.

We do not believe to be possible to reduce the asymptotical upper bound even
further, at least not without assuming something about the input (e.g., like binary search
assumes the input is sorted), for a simple reason: in a general extraction algorithm we will
have to analyze each node of the document at least once to decide if it should be extracted
or not. By doing that we are already at O(n). But we believe it is possible to reduce
the associated constant factor by filtering parts of the document prior to the more heavy
extraction processing.
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