
Anastasia Ailamaki
EPFL and RAW Labs SA

With Manos Karpathiotakis, Stella Giannakopoulou, Matt Olma,
and the EPFL DIAS lab

RAW— fast analysis
on all kinds of data

§ growing data

§ growing heterogeneity

§ data movement restrictions

2available data impedes business & scientific analytics

most firms estimate that they are only analyzing
12% of the data that they already have

Forrester, 2014

Processing technology grows much slower than data

(The Digital Universe, EMC/IDC 2014)

store interesting data

explore data efficiently

(WinterCorp Survey)

When you have a hammer…

EXCEL DATA

1. Write software tools
to analyze dataDatabase

LOAD

XML/JSON MACHINE
LOGS

LOAD

LO
AD

2. Clean, extract, transform, load ALL data

3. (finally!) Run analytics

QU
ER

Y

Database

Database

$$$$$O
pe

ra
tio

na
l

90% of the data is never used.

collect
store

access

information

data

tim
e

build database to run queries

process
cache

à bloated database software

new: one DB per app/data pair

Large-scale
embarrassingly parallel

Main-memory
DBMS

Column
stores

NoSQL
systems

Stream
DBMS

OLTP OLAP

80% of analysts’ time goes to
data preparation and configuration

databases
 will b

e ex
tinct

the way forward
• Data model:
– Support variety (complex structured and unstructured data)
– Col-store/Row-store are only two of many possible layouts

• Storage model:
– Don’t store!
– Run in situ and cache based on actual needs/usage

• Execution model:
– Generate engine based on query, available caches, history

Fundamentally rethink DB stack

RAW— a lean and agile engine
• Adaptive Query Processing
– A database per query and dataset
– SQL++ to query and clean all data

• Adaptive data access
– Tune database dynamically

collect
store

access

process
cache

NOT DISCUSSED:
Caching – see our ADMS and VLDB talks
Query optimization, data model – future work J

RAW— a lean and agile engine
• Adaptive Query Processing
– A database per query and dataset
– SQL++ to query and clean all data

• Adaptive data access
– Tune database dynamically

collect
store

access

process
cache

Classify /
Cluster

Transform &
Load

Flexibility
Ad-hoc queries

over diverse data formats

Performance
Fast queries

regardless of data format

[Symantec data]

detecting active spambots

fast queries on heterogeneous data
cannot load into a Database System!
l diverse formats
l legacy software
l privacy limitations
l data “owned” by one database

RAW: interface to raw data
With extended SQL
code-generated engine

key: data virtualization

RAW

…

CSV JSON.bin

Query

CSV JSON.bin

DBMS
Tra

ns
for

m

Query
adapting a query engine to data

Treat each source as
native storage format

Generate plug-in per data source

Query original data formats, files, and scripts

How to build a just-in-time data base

CSV
JSON

DBMS

SELECT bot, country, …
FROM SpamEmail e, SpamCategories c
WHERE e.id == c.id AND

e.lang = ‘English’ AND …

join

scan
JSON

scan
CSV

filter

SpamCategoriesSpamEmail

[VLDB14,CIDR15,
VLDB16]

CSV
JSON

join

scan
JSON

scan
CSV

filter

Code Generate the Access Paths

Code Generate the Query

Build Position and Data Caches

How to build a just-in-time data base
SELECT bot, country, …
FROM SpamEmail e, SpamCategories c
WHERE e.id == c.id AND

e.lang = ‘English’ AND …

SpamCategoriesSpamEmail

Monoids:
• Abstraction for “aggregates” computation

Monoid Comprehensions*:
• Operations between monoids

Support multiple data models as input & output

*Fegaras
[SIGMOD95,
TODS 2000,…]

Queries Monoid comprehensions

for {

} yield
Sum/Bag/List/Set/Top-K/…

p <- Patients, r <- BrainRegions,
p.id = r.id, r.amygdala.Vol > 0.2

bag p.age

“SQL++” Comprehensions Algebra
SELECT r.age
FROM Patients p
JOIN BrainRegions r
ON (p.id = r.id)
WHERE r.amygdala.Vol > 0.2

17

for {
p <- Patients,
r <- BrainRegions,
p.id = r.id,
r.amygdala.Vol > 0.2

} yield bag r.age

Δ"#$

% &'()*+(
,-')+

Internal Calculus

if-else
record construction
function application
(nested) comprehension
…

Algebraic form amenable to relational optimizations

Optimize cleaning operations holistically

Data cleaning using monoid comprehensions
for(o←orders) yield list split(o.ship_date,”/”)

for(d1←dataGroup,
d2←dictGroup,
d1.center = d2.center,
similar(metric,d1.item,d2.item,θ))

yield group (d1.item)

c1 cn
…

cn…
c1

dataGroup := for (o←orders)
yield cluster(o.item,kmeans)

dictGroup := for (d←dict)
yield cluster(d.item,kmeans)

Mask complex comprehension syntax

SQL-like extensions for data cleaning
Functional Dependencies:
orderno, item → quantity
SELECT o.orderno, o.item, *
FROM Orders o
FD((o.orderno, o.item), o.quantity)

SELECT <projections>
FROM <dataset>
DEDUP([<metric>,] [<theta>,] <attributes>)

Data Deduplication:

0.01
0.1
1

10
100

1000
10000

BIN CSV JSON BinCSV BinJS CSVJS BINCSVJS

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) PostgreSQL DBMS-C & MongoDB Proteus

Symantec spam email analysis

Flexible and fast by specializing & adapting

BIN CSV JSON BINCSV BINJS CSVJS BINCSVJS

95GB Binary - 22GB JSON – 22GB CSV
50 queries

suboptimal plan

build
cacheszone

maps

string data &
zone maps

RAW— a lean and agile engine
• Adaptive Query Processing
– A database per query and dataset
– SQL++ to query and clean all data

• Adaptive data access
– Tune database dynamically

collect
store

access

process
cache

0
50

100
150
200
250

0 50 100 150 200 250

Cu
m

ul
at

iv
e

tim
e

(m
in

ut
es

)

Query Sequence

DBMS DBMS with index In-situ

60GB smart meter data,
selectivity 1%,

128GB RAM, 1 thread

Tuning pays off
after 45 queries

Loading pays off
after 220 queries

Querying raw data w/o index:
Diminishing returns

Scanning all data is slow
Indexing/tuning non-trivial for ad hoc data

invest in popular data subsets

Raw
Data
File

Refine partitions over the data => Skip if useless for query

Tune indexes over popular partitions => Minimize data accesses

...

…

Enable data skipping
Fine-grained access path selection

Set the “ground” for reducing data access

Capture implicit clustering
Iteratively partition dataset

Q1 Qnattr1 attrN

…

adapt to data: logical partitioning

1) Collect data statistics at runtime
2) Calculate number of sub-partitions

Increase disjointness: Reduce distinct values
Remove tails: Reduce excess kurtosis

Homogeneous Query-based

...

…

adapt to queries: index tuning

Maximize gain: build cost vs performance

B+
What
- Value-Existence (i.e., Bloom filters)
- Value-Position (i.e., B+ Trees)

Qmattr1 attrN Index tuning on partition level

Choose what & when to build

When
- Based on randomized algorithm
- Cost of scan vs. cost of build + gain

Build and drop based on budget

costs vs. gains
Should I build or not?

Bf

Minimize update overhead
...

Store partition state
- Calculate hash value (MD5)

Monitor file for modifications

Recognize updated partitions

Fix modified partitions
- Drop/Re-build cache/index

append & in-place updates

...

attr1 attrN

Bf B+

Qm

Bf

Bf B+

Bf

Incremental logical partitioning
- Based on data distribution

Adaptive partition indexing
- Based on access patternsRaw Data

Access

Raw data

SQL
query

Raw Data
Access

Indexing
Structures Online

tuner

Adapt data access to queries and data at runtime
Combining online tuning with adaptive indexing

Monitors data for updates
- Updates data structures

Slalom: adaptive indexing over raw data

576.92 560.05

296.59

80.39

0

200

400

600

PostgreSQL PostgreSQL
with index

DBMS X DBMS X
with index

PostgresRAW Slalom

Ti
m

e
(m

in
ut

es
) Load

Index
Query

from raw data to results

1439.71 757.96

~

In-situ adaptive indexing achieves interactive access

59GB uniform dataset, 128GB RAM, cold caches
1000 point & range queries interchange on 2 attributes, sel: 0.5%-5%

~

what we learned
• currently data management cost grows with

data owned
• impossible to pre-cook a database system

suitable for all data
• from manual ingestion to automatic

adaptation: rethinking DB stack with just-in-
time queries and storage

XML/JSONEXCEL MACHINE
LOGSDatabase Database

How RAW works
1. Ask a question

2. Generate the needed software tools

3. Discover interesting data

Data is accessed and integrated in real time

MACHINE
LOGS

As queries run, RAW remembers information on data accessed
and generated code. Its “database” is only the useful data.

XML/JSONEXCEL Database Database

RAW
memory

Just-built
useful

tools
Frequently
used data

Why RAW is fast

RAW
Just ask.

dias.epfl.ch
raw-labs.com

