
Metamorfose: a data transformation framework based on

Apache Spark

Evandro Miguel Kuszera12, Leticia M. Peres2, Marcos Didonet Del Fabro2

1Federal Technological University of Paraná (UTFPR) – Dois Vizinhos – PR – Brazil

2Federal University of Paraná (UFPR) – C3SL Labs – Curitiba, PR – Brazil

{evandrokuszera@utfpr.edu.br, lmperes,marcos.ddf}@inf.ufpr.br

Abstract. On the context of large availability of open data, it is important to

provide interactive solutions where a data transformation workflow can be eas-

ily deployed and developed. This article presents Metamorfose1, a framework

for data transformation based on large-scale data processing engine Apache

Spark. Through the presented framework, the user can set up an interactive

transformation workflow for loading data, defining mappings between source

and target fields, performing transformations, and persisting the data. The user

can define transformation functions in Java or Javascript and create chains of

transformation where a transformation result can be used as input to the next.

1. Introduction

The ability to exchange and integrate data is crucial for many types of applications, es-

pecially with the diversity of data formats (e.g., structured or semi-structured). With the

emergence of open data, new solutions must be developed to easily explore and analyze

the large amount of data generated. Data transformation systems (DTS) are important in

these scenarios. The function of these systems is to perform transformations where in-

stances of a source schema are translated to instances of a target schema. DTSs are com-

posed of a set of translation tasks that can be defined as a quadruple {S, T, I s, Ie}, where

S is the source schema, T is the target schema, I s is a valid instance of S and Ie a valid in-

stance of T generated by applying the desired transformations over I s [Mecca et al. 2012].

A set of mappings M is used to denote the relationship between expected output and pro-

vided input.

Schema mapping and ETL (Extract, Transform, Load) tools are widely used to

transform and integrate diverse sources of data. Transformations in schema mapping

tools are based on declarative specifications (such as SQL, for example), not providing

the exact method they are implemented and executed. ETL tools define transformations

as data flows over a graph of operators. Operators range from simple mapping between

tables to complex data join and splitting operations, where the user can choose a specific

implementation to a data transformation [Dessloch et al. 2008].

CLIO [Haas et al. 2005] was one of the pioneering tools to execute schema map-

pings. Others have recently been proposed as ++Spicy [Marnette et al. 2011], LLunatic

[Geerts et al. 2014] and EXLEngine [Atzeni et al. 2017]. Clover ETL [CloverETL 2018],

Pentaho Kettle [Pentaho Kettle 2018], OpenRefine [OpenRefine 2018] and Talend Open

1Metamorfose video: https://youtu.be/ta9mXuCeIwM

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

11

Studio [Talend 2018] are examples of ETL tools. Schema mapping tools are intended for

designers who need to express the main components of a data transformation task. While

ETL tools are intended for users interested in efficient implementations of a data trans-

formation task. Depending on the context, the use of these tools is not trivial, requiring

a complex installation and configuration process to perform simple data transformations.

In these scenarios concise tools are an option, not requiring the mastery of a large set of

technologies to perform data transformations.

In this paper we present Metamorfose, a framework for data transformation based

on large-scale data processing engine Apache Spark [Zaharia et al. 2016]. The choice of

using Apache Spark was motivated by its support of a wide range of processing workloads

and abstractions provided to manipulate datasets. Through Metamorfose the user can

load data, define mappings between source and target fields, execute transformations, and

persist data. Metamorfose is extensible and independent of the underlying data format.

New data sources can be added by creating Spark datasets. In the current version, it

can load and persist data as CSV file or relational database table. As a contribution, the

framework allows the definition of an interactive transformation workflow that can be

integrated with user-defined transformation functions implemented in Java or Javascript.

The use of Javascript makes it flexible to add new transformation functions. In the next

section the framework will be presented.

2. Metamorfose

The architecture of Metamorfose and mapping definitions will be presented below.

2.1. Architecture of Metamorfose

(a) Architecture of Metamorfose. (b) Execution Flow.

Figure 1. Architecture and Execution Flow of Metamorfose.

The Figure 1 (a) presents the main components of Metamorfose. Through the

graphical user interface it is possible to load data source for transformation, execute data

queries through Spark SQL (Apache Spark module) and specify mappings between source

and target schema. Each data source is loaded as a Spark dataset. To transform the data,

map functions are executed on the source dataset according to the user-defined mappings

(Map Definitions module).

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

12

The Metamorphosis execution flow over one data source is presented in Figure 1

(b). In (1) the data is loaded as a Spark dataset. Based on the user mappings the dataset

is transformed (2) producing (3) dataset’ as a result. Dataset’ can be used: (4) as input

to a new transformation, (5) as input to SQL query or (6) can be persisted to CSV file or

relational database table. The SQL query execution on dataset’ produces new (7) dataset”.

Dataset” can be used for new data transformations (8), for persistence (9) or visualization

(10). This flow allows to flexible define chains of transformations. Transformations can

be applied over the current dataset or can create a new dataset with the resulting data.

2.2. Mapping Definitions

A data schema can be defined as S = {s1, ..., sn}, where si represents a data field of the

schema S. From a source schema S is possible to derive a target schema T applying

transformations on the field values of S. Transformations can be represented as a set

of mappings M = {(s1, t1, f 1), ..., (sn, tn, f n)}, where si represents one or more source

fields, ti a target field and f i a transformation function. Transformation chains can be

defined using the target schema T as the source schema for next transformation. To

persist T data for an existing data source, T must correspond to the data source schema.

Figure 2 (a) shows an example of transformation over a table with person data. ID

field is mapped to the COD field in the target schema. NAME and LASTNAME fields

are mapped to the NAME field. SEX field data are transformed from ’F’ and ’M’ to

numerical values 1 and 2, respectively. ADDRESS and PHONE fields only exist in the

target schema and they will receive an empty string and null value, respectively.

(a) Source and target schemas. (b) Transformations settings.

Figure 2. Mapping and transformation example.

Mappings are declarative statements that establish correspondence between source

and target fields, which can be integrated with data transformation functions. Figure 2 (b)

shows the mappings used to transform the data. $VALUE() and $LIST() are reserved

words and act as Metamorfose operators. Line 1 displays a one-to-one mapping between

source and target, with Casting data type conversion. In line 2 the word $LIST denotes a

many-to-one mapping, where a list of source fields is sent to user-defined function (UDF)

concat. In this simple example a concatenation operation is performed. However, com-

plex functions can be defined in Javascript. In line 3 is an example of one-to-one mapping

using UDF sex. In lines 4 and 5 the word $VALUE is used to insert constant values into

the target schema. This set of mappings can be persisted as a JSON file for future use.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

13

3. Demonstration

The Metamorfose tool provides a graphical user interface to ease the definition of map-

pings and data transformation execution. In the demonstration we will present the main

flow of tool: data loading, mapping definitions and transforming execution.

Figure 3. Metamorfose main screen.

3.1. Data Loading and Exploration

The Figure 3 presents the Metamorfose main screen. In (1) the user can load or remove

datasets, view the list of available datasets, or add mappings to selected dataset. Add

Mapping button shows the mapping screen (details in the next section). The user can load

datasets from CSV files or relational database tables (Postgres, for example). In (2) the

user can submit SQL queries (using Spark SQL) on the loaded datasets. In (3) the user

can view and explore the data produced by the SQL query. SQL query results can be

added as a new dataset in the list of available datasets pressing To Dataset button in (2).

In the example of Figure 3 a CSV file (matriculas2013) with four million records was

loaded and a SQL query was submitted to visualize the data in the result table.

3.2. Mappings

The user must select a dataset from the list and click the Add Mapping button to de-

fine mappings. The mapping screen appears and the selected dataset scheme (source)

is loaded automatically. The Figure 4 presents a mapping previously defined and loaded

from a JSON file. In (1) the fields and data types of the source dataset are displayed. In (2)

the user must specify the fields and data types of the target dataset. In (3) the user must de-

fine the type of the transformation (Casting or Javascript). For transformations involving

Javascript UDFs the user must enter the code in the edit screen in (4). After mapping defi-

nitions between source and target fields, two options are available (5): the Apply Mapping

button applies the mappings over the source dataset and modify your data and schema, or

the Apply Mapping to New Dataset button creates a new dataset from source dataset. The

latter option allows it to define transformation chains. The new datasets are added in the

list of available datasets for further use. In Figure 4 there are mappings for field renaming,

insertion of constant values in the target dataset and Javascript UDFs where one or more

source fields are transformed to one target field according with UDF logic.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

14

Figure 4. Metamorfose mapping definition screen.

3.3. Data Transformation

After defining the mappings the user can visualize or persist the contents of the dataset

through Metamorfose main screen (Figure 3). The persistence options are CSV and JDBC

and are available through the Actions menu. At this point the data transformations are

executed by Apache Spark.

4. Evaluation

Yearly, the National Institute of Educational Studies and Research Anísio Teixeira

(INEP)2 provides open data about educational census in Brazil. These data including

enrollments, teachers, schools and classes in CSV format that exceed 69 million records

per year. This data source can be used to analyze the situation of education in Brazil.

However, the format of data is not rigid, variations are found in every release, such as

adding new fields, changing and removing existing fields, for example. Metamorfose was

used to map and transform CSV data to a predefined PostgreSQL database.

We have performed experiments using Brazilian enrollment data from the year

2013. Due to the number of records, the data were made available in five CSV files

representing the South, Southeast, Midwest, North and Northeast regions of the country

(around 55 million records). It were defined 82 mapping fields between CSV file and

target relational schema. One-to-one, many-to-one mappings and Javascript UDFs were

used to transform data.

Table 1. Number of records and execution time of experiment performed.
Brazil Region Records Time

Midwest 4.038.979 10 min

South 7.276.108 18 min

Northeast 16.729.543 41 min

Southeast + North 27.379.690 65 min

Metamorfose was run on a machine with Intel Core i7 2.5GHz processor, 16GB

RAM, Windows 10 Home and Postgres 10. The Table 1 shows the number of records by

region of Brazil and execution time to transform and load the data to relational database.

2INEP: http://www.inep.gov.br/

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

15

This experiment aimed to validate the tool on a data set of moderate size. It is possible

to observe that the execution time has linear growth in respect of the number of records.

Future experiments will be carried out considering more records and processing nodes.

5. Conclusions

In this paper we have presented the Metamorfose tool, a framework for data transforma-

tion built on large-scale data processing engine called Apache Spark. Through a graphi-

cal user interface is possible to define an interactive data transformation workflow where

the user can loading data, defining mappings, performing transformations, exploring and

persisting the results. A mapping definition can be integrated with data transformation

functions implemented in Java or Javascript, providing a flexible way to define complex

transformations. It is possible to execute SQL queries to filter, aggregate and join the

datasets before or after every data transformation. The results can be persisted as CSV

file or as relational database table. Metamorfose was validated using real open data about

education in Brazil. As future work, new features will be added including transforma-

tion functions, supporting for other data sources (JSON and XML) and support for other

database models.

References

Atzeni, P., Bellomarini, L., Bugiotti, F., and De Leonardis, M. (2017). Executable Schema

Mappings for Statistical Data Processing. Distributed and Parallel Databases.

CloverETL (2018). http://www.cloveretl.com/. Accessed on 6 January 2018.

Dessloch, S., Hernandez, M. A., Wisnesky, R., Radwan, A., and Zhou, J. (2008). Orchid:

Integrating schema mapping and etl. In 2008 IEEE 24th ICDE, pages 1307–1316.

Geerts, F., Mecca, G., Papotti, P., and Santoro, D. (2014). That’s All Folks! Llunatic Goes

Open Source. PVLDB, 7(13).

Haas, L. M., Hernández, M. A., Ho, H., Popa, L., and Roth, M. (2005). Clio grows up:

From research prototype to industrial tool. In Proceedings of the 2005 ACM SIGMOD,

SIGMOD ’05, pages 805–810, New York, NY, USA. ACM.

Marnette, B., Mecca, G., Papotti, P., Raunich, S., and Santoro, D. (2011). ++spicy: an

opensource tool for second-generation schema mapping and data exchange. PVLDB,

4(12).

Mecca, G., Papotti, P., Raunich, S., and Santoro, D. (2012). What is the iq of your data

transformation system? In Proc. of the 21st ACM CIKM, CIKM 2012, pages 872–881.

OpenRefine (2018). http://openrefine.org/. Accessed on 4 January 2018.

Pentaho Kettle (2018). https://www.hitachivantara.com/. Accessed on 4 April 2018.

Talend (2018). https://www.talend.com/. Accessed on 5 Febuary 2018.

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen,

J., Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., and Stoica,

I. (2016). Apache spark: A unified engine for big data processing. Commun. ACM,

59(11):56–65.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

16

