
VP-Viewer: Keeping track of your query

from a vantage point∗†

Daniel L. Jasbick1, Thaylon Guedes2, Rodolfo A. Oliveira1,

Lúcio F. D. Santos3, Daniel de Oliveira2, and Marcos V. N. Bedo1

1Fluminense Northwest Institute – Fluminense Federal University (UFF)

{danieljasbick, rodolfooliveira, marcosbedo}@id.uff.br

2Institute of Computing – Fluminense Federal University (UFF)

thaylongs@id.uff.br, danielcmo@ic.uff.br

3Federal Institute of Technology North of Minas Gerais (IFNMG)

lucio.santos@ifnmg.edu.br

Abstract. VP-Tree is the metric sibling of Binary Tree and k-Dimensional Tree

indexing structures. However, visual exploration of VP-Trees is an open, yet im-

portant, issue as drawing crisp borders of VP-Tree partitions over a 2D transfor-

mation of metric data is often unachievable. In this demonstration, we present

VP-Viewer, an index visualization tool for the investigation of the VP-Tree struc-

ture and the inspection of query paths. VP-Viewer builds upon a metric space

library and enables the construction of parameterized VP-Trees, in which meth-

ods for distance calculation, pivot selection, and index balancing, besides the

datasets themselves, are provided by the users. VP-Viewer renders VP-Trees by

distinguishing directory nodes, which include vantage points, partition charac-

teristics, and pivot-based distance distributions, from leaf nodes, which encom-

pass the data elements and their distance to vantage points. Accordingly, users

can easily explore the partitioning of a dataset for distinct parameterizations.

Finally, VP-Viewer also enables the submission of range and kNN queries so

that users can evaluate the tree branches examined by the searching algorithms.

1. Introduction

Similarity searching is a base paradigm for the handling of data that are “alike”

but not “equal”. Such paradigm supports a variety of computational tasks,

such as distance-based classification and content-based retrieval [Chávez et al. 2001,

Padmanabhan and Deshpande 2015]. In practice, two of the most requested similarity

searches are the range and neighborhood queries. An example of a range query in the

bioinformatics domain is (Q1) Select all polypeptide chains that are different from a

given chain by at most 3 codons, whereas a neighborhood (kNN) query example in the

biomedical domain is (Q2) Find the 15 images of Magnetic Resonance Imaging (MRI)

from distinct studies which are the most similar to a given MRI image of an (undiagnosed)

patient. Range and neighborhood queries can be modeled upon metric spaces, where the

∗The authors thank FAPEMIG, FAPERJ, CNPq and CAPES for their financial support.
†https://github.com/Jasbick/VP-Viewer

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

5

elements (polypeptide chains and MRI images, in the aforementioned examples) are rep-

resented as points and the (dis)similarity between each pair of points is evaluated by a

distance function that complies to the symmetry, positivity and triangle inequality prop-

erties [Hetland 2009, Padmanabhan and Deshpande 2015].

Several metric access methods have been proposed to speed up similarity-

based queries [Chávez et al. 2001, Chen et al. 2017]. Such methods accelerate simi-

larity searches by targeting an optimization criterion, such as the number of disk ac-

cesses, the number of distance calculations, or the overhead caused by the searching algo-

rithm [Chávez et al. 2001, Hetland 2009]. Vantage-Point Trees (VP-Trees) access meth-

ods are particularly versatile for enhancing query executions, as they enable the organiza-

tion of the search space in a hierarchical and disjoint fashion [Li et al. 2014]. VP-Trees

are indexing structures that extend the concept of a Binary Trees for the querying of met-

ric spaces within logarithm time complexity once each decision of searching either a left

or right node may halve the number of subtrees to be evaluated [Yianilos 1993].

Roughly speaking, VP-Trees organize data from a set S using a pivot p, a median

µ of distances from p to elements in S , a maximum distance dm between p and any el-

ement in S , and two partitions generated from p: left and right nodes. Elements whose

distances to p fall inside the [0, µ) interval are assigned to the left node, whereas elements

of the [µ, dm] interval are set to the right node. The left and right nodes are datasets

themselves and can be recursively divided until either each node becomes a unitary set,

or a maximum number of elements per leaf node is reached. The last criterion generates

the VP-Tree variation called vpsb-tree, which we shall examine hereafter. Median µ is

a careful choice for the disjointed partitioning of S as unique medians would split the

dataset into a perfectly balanced tree. Such uniqueness, however, depends on the dis-

tance distribution so that the resulting tree may be unbalanced if leaf nodes are unable to

handle overflow. Likewise, the method for selecting VP-Tree pivots directly affects tree

balancing and branching-based search quality [Li et al. 2014]. VP-Tree pivot set includes

the data elements that maximize the variance of the distance distribution [Hetland 2009],

but the solution for fetching such an optimal set is polynomial [Ruiz et al. 2013]. Al-

ternatively, several heuristics can be used for reducing the pivot selection costs for large

databases, such as Randomness, Sampling, and Convex Hull Points [Chávez et al. 2001].

Finding the most suitable setting of a VP-Tree, i.e., pivot selection and tree balanc-

ing, is often unintuitive and experimentally burdensome [Li et al. 2014, Chen et al. 2017].

In this demonstration, we present VP-Viewer, a tool for assisting users in both understand-

ing and assessment of VP-Trees. Although existing applications, e.g., the C++-based

MAM-View [Chino et al. 2010] or a JavaScript-based web solution1, can be used for the

visualization of indexed metric data, they focus on rendering 2D representations of data

partitioning and can express neither the relationship between VP-Tree nodes nor the dis-

tance distributions within rooting nodes. Unlike these previous approaches, VP-Viewer

distinguishes VP-Tree directory nodes, which include vantage points, partition lower and

upper bounds, covered number of elements, and pivot-based distance distributions, from

leaf nodes, which encompass the data elements and their distance to vantage points. Ac-

cordingly, users can easily explore the partitioning of a dataset for distinct parameteri-

zations. Furthermore, VP-Viewer is not only limited to generate VP-Tree visualizations.

1https://fribbels.github.io/vptree/vptree.html

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

6

Our tool also enables the user to submit range and neighborhood queries so that they

can interactively evaluate the tree nodes that were examined by the VP-Tree branch-and-

bound algorithms, i.e., users can compare distinct VP-Tree searching performances.

2. The VP-Viewer Architecture

VP-Viewer is a cross-platform desktop application that assists users in the exploration

and assessment of VP-Trees. Internally, VP-Viewer is composed of a set of connected

modules, as in Figure 1. The tool builds upon the Arboretum metric space library2 for

(i) reading user-provided datasets, and (ii) casting them into a common abstraction regard-

less of the domain (number, string, etc.) – Figure 1(1–3). VP-Viewer provides its own

implementation of VP-Trees by employing both Arboretum data abstraction and metric

distance function interface. We also employ open-source Graphviz library3 for the graph

representation of the resulting VP-Tree structure – Figure 1(4).

Figure 1. Overview of VP-Viewer’s architecture.

Qt framework4 is used for the incorporation of both VP-Tree implementation and

Graphviz graph representation into widgets, which are ready-to-use GUI components.

We also implemented a group of routines for the selection of pivots and for the gathering

of pivot-based distance distributions – Figure 1(5). Such routines are implemented by

extending the Qt thread interface so that they run along with the VP-Tree construction.

Finally, we integrated all resources into a single GUI interface that supports data loading,

zoom-in/out, inspection of pivot-based distance distributions within directory nodes, and

submission-and-solving of range and neighborhood queries – Figure 1(6 – 7). The visual

exploration of similarity searches involves the interaction between VP-Tree implementa-

tion, Graphviz library, and Statistical Functions modules.

In the first step, VP-Tree implementation executes a branching-based algorithm

for the query execution and labels the evaluated tree nodes, whereas the Statistical mod-

ule gathers the number of both distance calculations and inspected nodes. Next, while

Graphviz renders the labeled nodes by highlighting them, the differences between the

branching-based costs are juxtaposed to the brute-force solution (sequential scan) costs in

as a bar percentage chart. Finally, the highlighted query path and the searching bar costs

are embedded into widgets and displayed to the user.

2https://www.bitbucket.org/gbdi/arboretum
3https://www.graphviz.org/
4https://www.qt.io/

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

7

3. Demonstration of VP-Viewer

Here, we use VP-Viewer on three real-world datasets aiming at providing an exemplifi-

cation of the scenarios covered by our tool. Table 1 details the demonstration datasets

regarding cardinality, dimensionality and distance function (δ).

Table 1. Description of the datasets used in the demonstration.

Dataset Card. Dim. δ Description Available at

CITIES 5, 507 2 L2 Lat-long coordinates of 5, 507
Brazilian cities.

www.ibge.gov.br

WORDS 5, 757 − Edit All data elements are English

words composed of precisely

5 characters.

www-cs-faculty.

stanford.edu/

˜knuth

ISOLET 6, 238 617 L1 Features extracted from

records of persons speaking

each alphabet letter.

archive.ics.uci.

edu/ml/datasets/

isolet

Upon accessing VP-Viewer, users can visualize the main panel (Figure 2) that

requests the disk location of the dataset to be indexed (1), the data cardinality (2) and

dimensionality (3), the maximum allowed number of elements per leaf node (4), the dis-

tance function to be used (5), the pivot selection method (6), and, finally, the authoriza-

tion parameter for node overflow (7) that may be set to “True” if balanced tree is a hard

constraint, or “False” otherwise. At this point, users can request the VP-Tree construc-

tion by clicking on “generate” button and explore the resulting structure. Although VP-

Viewer includes L1, L2, and Edit functions, other distances can be plugged in through

the Arboretum library interface. VP-Viewer alternatives for pivot selection are “Random”,

“Yianilos’s Sampling”, and “Convex Hull”.

1

2

3

4

5

8

9

6

7

10 11

Figure 2. VP-Viewer main interface.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

8

Figure 2 illustrates two different VP-Trees constructed for WORDS dataset with

distinct constraints on node overflow. In this scenario, tied elements at the median dis-

tance to the pivots are expected because the Edit distance returns discrete measures in the

[0, 5] interval. Figure 2(8) shows the resulting VP-Tree for a relaxed overflow constraint,

which means VP-trees are allowed to be unbalanced. Green nodes indicate all leaves

contain no more than the user-specified number of elements. Alternatively, a balanced

tree requires the right children of directory nodes to handle overflow, as in Figure 2(9).

Orange nodes indicate (i) leaves are currently storing more elements than specified in the

user parameters, and (ii) additional disk paging may be necessary whenever the number

of elements is related to the disk page size.

Before changing the VP-Tree parameterization for softening the tie issue, users

can verify the pivot-based distance distribution on the VP-Viewer Node Visualization

tab – Figure 2(10)). Such a resource enables the user to explore the distance distribution

within each directory node. By selecting a particular node, users can visualize the distance

histogram of the elements rooted by the directory node to its pivot. Figure 3(a) shows an

example for the unbalanced case of WORDS dataset. Orange histogram bar is the bucket of

the median and expresses the probability of ties in terms of frequencies. The probability

is recursively propagated to the right-most node of the structure.

Although, choosing a new pivot selection method may diminish (or derail) the ties

of median values, distance concentration around medians can be unavoidable for certain

cases. For instance, Figure 3(b) shows the distance distribution for a VP-Tree directory

node constructed for the ISOLET dataset with Yianilo’s sampled pivots, 800 elements

per leaf node, and unbalanced tree constraint setting. In this high-dimensional case, the

majority of pivot-based distance distributions resemble the Standard distribution in which

median behaves analogously to the mean. The switch of Yianilo’s sampled pivots to

either Random or Convex Hull criteria did not change the Standard distribution behavior

of distances in the evaluations we performed.

(a) (b)

Figure 3. Exploration of pivot-based distance distribution. (a) WORDS dataset.

(b) ISOLET dataset.

The last aspect we consider for VP-Viewer is experimental evaluation may be

necessary for finding the most suitable VP-Tree partitioning. VP-Viewer enables users

to request range and neighborhood queries on the Query parameters tab – Figure 2(11)).

Figure 4(a) provides an example of a neighborhood query on ISOLET dataset, whereas

Figure 4(b) shows an example of a range query on CITIES dataset. VP-Viewer exe-

cutes both branching-based VP-Tree search and brute-force algorithms for each requested

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

9

query, and presents the performance differences between the two searching routines as a

bar plot. Our tool also labels the inspected nodes that are highlighted as the query path

in the main interface. As a result, users can visualize and interpret VP-Tree searching

parameters and also compare distinct VP-Trees settings by evaluating their performances

over a (sequence of) similarity query.

Figure 4. Similarity searching on VP-Viewer. (a) A neighborhood query on
CITIES dataset. (b) A range query on ISOLET dataset.

4. Conclusions

In this demonstration, we presented VP-Viewer, a tool that supports users in the under-

standing and assessment of VP-Trees. VP-Viewer is composed of a set of individual

modules, which enable users the coupling and testing of several methods for distance

calculation and pivot selection. We examine the capabilities of VP-Viewer and discuss

usage scenarios for three real-world datasets. Our application has presented interesting

resources in the handling of metric data from different perspectives.

References

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquı́n, J. L. (2001). Searching in

metric spaces. ACM Computing Surveys, 33(3):273–321.

Chen, L., Gao, Y., Zheng, B., Jensen, C. S., Yang, H., and Yang, K. (2017). Pivot-based

metric indexing. PVLDB, 10(10):1058–1069.

Chino, F. J. T., Vieira, M. R., Traina, A. J. M., and Jr., C. T. (2010). MAMView: A

Framework for Visualization of Metric Trees. In SBBD – Demo Section, pages 1–6.

Hetland, M. L. (2009). The basic principles of metric indexing. In Swarm Intelligence

for Multi-objective Problems in Data Mining, pages 199–232. Springer.

Li, Q., Z., H., Lei, F., L., G., Lu, M., and Mao, R. (2014). Excluded Middle Forest vs.

VP-Tree: An Analytical and Empirical Comparison. In PAIS, pages 431–437. Springer.

Padmanabhan, D. and Deshpande, P. M. (2015). Operators for Similarity Search - Se-

mantics, Techniques and Usage Scenarios. Springer.

Ruiz, G., Santoyo, F., Chávez, E., Figueroa, K., and Tellez, E. S. (2013). Extreme pivots

for faster metric indexes. In SISAP, pages 115–126. Springer.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor search in

general metric spaces. In ACM-SIAM SDA, pages 311–321. SIAM.

2018 SBC 33rd Brazilian Symposium on Databases (SBBD) August 25-26, 2018 - Rio de Janeiro, RJ, Brazil

10

