

Spark Scalability Analysis in a Scientific Workflow
Renan Souza1, 2, Vítor Silva1, Pedro Miranda1,

Alexandre A. B. Lima1, Patrick Valduriez3, Marta Mattoso1
1COPPE – Federal University of Rio de Janeiro

2IBM Research – Brazil
3Inria and LIRMM, Montpellier

{renanfs,silva,pmiranda,assis,marta}@cos.ufrj.br,
patrick.valduriez@inria.fr

Abstract. Spark is being successfully used for big data parallel processing in
many business domains (social media, finance, retail). Spark’s scalability,
usability, and large user community have motivated developers from scientific
domains (bioinformatics, oil and gas, astronomy) to try it. However, scientific
applications’ profile, e.g., black-box programs and intense file writes, differs
from traditional business workflows, which may affect its scalability. We
present a scalability analysis of Spark in a real case-study in Oil and Gas
domain. We explore workloads on a 936-cores HPC cluster processing 330
GB of scientific data. We show that it scales very well when running long-
lasting scientific tasks, but its performance is lower for short-duration tasks.

1. Introduction: Spark and Scientific Workflows

Spark is one of the most popular data parallel processing systems for business big data
workflows. One common characteristic in such workflows is that they require large
computing clusters to process vast amounts of data. This is also true for many
workflows in scientific domains, such as bioinformatics, oil and gas, and astronomy
[Atkinson et al. 2017]. Besides its scalability in business workflows [Armbrust et al.
2015, Shi et al. 2015], Spark has many other interesting features. For example, a
dataflow-oriented execution model, an API using well-known programming languages
(e.g., Python, Scala, Java) that facilitates expressing linked data transformations (e.g.,
map, reduce, filter, join) of typed data elements, an efficient fault-tolerance support, and
a large user community. Such features have motivated scientific workflow users to
migrate from traditional parallel scientific workflow management systems to Spark
[Gittens et al. 2016, Oliveira et al. 2015, Zhang et al. 2017].

However, despite the shared characteristic of big data processing, scientific and
business workflows have many differences. Scientific workflows are commonly
designed as multiple linked Many-Task Computing (MTC) applications [Raicu et al.
2008]. That is, tasks in a scientific application consume input data, perform scientific
computations, and produce output data that feeds a subsequent task of a different
application, thus forming a dataflow between linked tasks. Each task may perform
computations with varying complexity levels that last from milliseconds to a few
minutes each. In addition, each task normally consumes and produces small files (tens
of MB). Very often, scientific workflows expect that those files are stored at runtime on
an HPC shared file system (e.g., GPFS, Lustre) for data communication between tasks.
In total, an entire workflow execution may take days of continuous run and process
terabytes of data. In contrast, common big data workflows read large input files in their

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

paper:174092

288

beginning, process them, and write aggregated output data on disk to be analyzed,
queried, and used for plotting charts and interactive dashboards. Spark is highly
benefited in this case, as it can load from disk only once, process the data in its Resilient
Distributed Datasets in the cluster memory, and write results to disk in the end. Besides,
differently than typical scientific workflows, business workflows are good fit for shared-
nothing clusters, often seen in Spark deployments, as disk I/O is reduced.

In addition, traditional scientific workflow systems deal with scientific
applications as black-boxes. That is, tasks are aware of input and output data, but the
internal computation is opaque. When developing a scientific workflow, users do not
want to rewrite very complex (already tested, optimized, and stable) scientific programs
using a different programming language or, oftentimes, they only have the executable
binaries and not the source code. Spark API allows developers to completely write their
code using native data transformations. It enables Spark’s engine to be aware of the
internals of each task and perform runtime optimizations for the benefit of in-memory
data processing and data locality. This is not achievable when running typical scientific
workflows developed as chains of black-boxes. Thus, these scientific workflows’
characteristics may harm Spark’s performance. Although several works have analyzed
Spark’s performance in business workflows, very few have investigated Spark in
scientific workflows [Gittens et al. 2016, Oliveira et al. 2015, Zhang et al. 2017]. The
ones that do either adapt their code to enable Spark’s runtime optimizations, or limit
those multiple disk I/O commonly seen in scientific applications, or use a shared-
nothing cluster, rather than a traditional HPC shared file system. Therefore, we are not
aware of works that have investigated Spark’s scalability in scientific workflows by
exploring multiple typical scientific workloads using the traditional profile of scientific
applications, such as parameter sweep workflows, one of the most representative class
of workflow applications [F. da Silva et al. 2017].

In this work, we use a real case study in Oil and Gas domain to build a scientific
workflow in Spark and understand its scalability. We do not modify the original
scientific application codes, but we model its parameter sweep as a dataflow using
Spark. We use native Spark operators for external calls to the black-box applications,
which write multiple files on a shared disk during execution. Source code of the
dataflow implementation is on [GitHub]. We deploy Spark on a large HPC cluster, with
936 cores, where all nodes share a fast file system. We perform scalability analysis by
varying multiple workloads, typical in scientific workflows, to understand the system
performance. We show that Spark scales very well for workflows with long-lasting
tasks, but its performance is lower for short-duration tasks. In the remainder of this
paper, we explain the scientific workflow utilized in Section 2, the scalability analysis in
Section 3, and the conclusion in Section 4.

2. Risers Fatigue Analysis Workflow in Spark

We model and execute a synthetic implementation of Riser Fatigue Analysis (RFA)
scientific workflow based on a real case study in Oil and Gas domain. Specific details
about this workflow can be found in [Souza et al. 2016]. Figure 1 shows RFA composed
of 7 linked programs with a dataflow in between. The programs generate intermediary
raw data files. Each of those files range from 8 to 14 MB, and there may be thousands of
them in a real execution, generating terabytes of data.

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

289

To implement RFA in Spark, instead of re-writing those complex programs
using its APIs, we follow the black-box approach to run external programs in a Spark
dataflow. We use the natively available Process library in Spark to run external process
executions. By doing so, it only manages the dataflow between each program call, while
the actual task computation and file writes to the shared file system are outsourced in the
scientific applications. Figure 2 shows a higher-level implementation of RFA in Spark,
where we omit intermediary data manipulation for the dataflow, which is done inside
Spark. The actual implementation is publicly available on [GitHub].

Figure 1. Risers Fatigue Analysis workflow.

1. val inputFiles = sc.textFile("/shareddisk/inputdirectory")
2. val uncompress = inputFiles.flatMap(x => Process("./Uncompress", x))
3. val preProcessing = uncompress.map(x =>Process("./Preprocess", x))
4. val analyzeRisers = preProcessing.map(x => Process ("./AnalyzeRisers", x))
5. val calcWearTear = analyzeRisers.filter(x => Process("./CalcWearTear", x))
6. val analyzePos = analyzeRisers.filter(x => Process("./AnalyzePos", x))
7. val jresults = calcWearTear.join(analyzePos)
8. val compressRes = jresults.reduceByKey((x,y) => Process("./Compress", x); x)

Figure 2. Risers Fatigue Analysis workflow implemented in Spark.

3. Spark Scalability Analysis

We perform scalability analysis of Spark running RFA workflow. Scalability refers to
the ability of a system to accommodate to a growth of the computing resources (e.g.,
physical nodes) or the workload [Özsu and Valduriez 2011]. With respect to workload
variation, in MTC workflows, there are at least two factors that compose a workload:
number of tasks and task duration [Raicu et al. 2008]. Except for the last experiment,
which has a real workload with varying task durations, we generate multiple synthetic
workloads to represent different typical scenarios in scientific workflows to perform the
scalability analysis. The task durations of the synthetic workloads follow a normal
distribution with standard deviation 20% of the value of the task duration on average.

For software, we use native Spark version 1.6.1 with default settings, deploying
on a standalone cluster using the cluster’s shared file system. For hardware, we use a
cluster with 39 nodes, with 24 cores each (936 cores in total), in Grid5000
(http://www.grid5000.fr). Each node has two AMD Opteron 1.7 GHz 12-core
processors, 48GB RAM, connected via Gigabit Ethernet, and access a 10TB shared
network storage. We repeat the experiments until the standard deviation of workflow
execution times is less than 1, and the results are the average within the 1% margin.

Experiment 1: scalability varying workload and resources. We measure the
execution time on 10 workers (240 cores) running about 6k tasks lasting 1 minute on
average each. Then, we double the number of workers and tasks (480 cores - running
12k tasks). After, we execute using near four times the number of workers and tasks
(936 cores - running 23.4k tasks). These numbers are representative for real RFA
workloads [Souza et al. 2016] and other typical scientific workflows. Ideally, when the

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

290

workload increases proportionally to the computing resources added to the cluster, the
execution time is expected to remain constant. As Figure 3-I shows, Spark is scalable
for running a typical execution of RFA, as its curve remains close to a horizontal line.
When the scale increases, the system scalability starts to decrease. However, running
936 tasks concurrently, Spark runs only 17% away from the ideal line, which is
considered small in such large scale. These results lead us to further investigate the
system performance by exploring a wider variety of scientific workloads fixing the
computing resources in its maximum, as in all following experiments.

Figure 3. Experiments’ results.

Experiment 2: varying task duration from very short to short-term. Although in
MTC workflows tasks are commonly long-term (i.e., many seconds or few minutes on
average each) [Raicu et al. 2008], we evaluate Spark’s scalability on 20 k tasks, varying
task duration on average from very short (taking few milliseconds) to short (up to 1
second). These workloads are present in some scientific applications that perform very
simple processing. By running short tasks, we are stressing the task scheduling system.
Results are in Figure 3-II. We calculate the ideal time as (Number of Tasks * Tasks
Duration on Average)/Number of Cores. Results show that Spark runs considerably
below the ideal time. Spark has a higher initialization time (it is scheduling to all 936
cores) compared to the workload being computed (the entire computation takes at most
2 minutes only). When this happens, Spark’s performance is compromised, as the best
result (80% away from ideal) happened for 1-second tasks. It indicates that when the
duration increases, Spark’s performance gets slightly closer to the ideal line.

Experiment 3: fixed number of tasks, varying task duration. Experiment 2 indicates
that when task duration increases, Spark’s performance tends to increase. In this
experiment, we further analyze this. We vary average task duration, from short (5 s) to
long (120 s), fixing two different numbers of tasks: small (4.6 k) and large (23.4 k,
about 5 times 4.6 k). Based on Experiment 2 results, we plot two expected lines by
setting the base result (where Spark achieves best performance) as the longest task

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

291

durations evaluated, i.e., 120 s on average, and then we expect Spark’s performance to
degrade when task duration decreases. As Figure 3-III shows, this is exactly what
happens. To understand the results, we analyze the differences between the expected
lines and the actual lines. In this experiment, when these differences are small, Spark
maintains its high scalability for each workload analyzed. Ideally, this difference should
remain small. For both fixed number of tasks, these differences vary similarly. However,
in both cases we see that the shorter the task duration, the greater the difference. For 60-
seconds tasks, the differences are about 10%, whereas for 5-seconds tasks, the
difference is 73%. The reasons for this are that there are many more frequent concurrent
writes to disk during execution and the task scheduling system is overloaded.

Experiment 4: Fixed task durations, varying number of tasks. In this experiment,
we fix two task durations (5 s and 60 s) and increase the number of tasks from small
(4.6 k), to mid (12 k), and large (23.4 k). We expect that execution time increases
proportionally to the number of tasks. Results are in Figure 3-IV. We also analyze the
difference between actual and expected results. In this experiment, the larger these
differences, the faster Spark runs than the expected time. That is, Spark is more scalable
when these differences are larger. The differences between expected and actual time
does not vary significantly when number of tasks increases. Thus, Spark’s performance
is less sensitive to the number of tasks. However, for 23.4 k tasks, the difference
between expected and actual time for 60 s task duration is 46%, whereas for 5 s task
duration, the difference is 33%. Therefore, Spark has better scalability for longer tasks
and number of tasks variation does not significantly affects its performance.

Experiment 5: Mixed task durations, varying number of tasks. Up to this point, we
analyzed Spark’s scalability under different conditions by executing synthetic
workloads. Now, we investigate a more realistic scenario. We analyze a real workload
for the RFA workflow, which mixes short, mid, and long-term tasks. In this workload,
on average, Uncompress tasks take 1 s each; Pre-processing tasks take 10 s, Analyze
Risers tasks take 60 s, Calculate Wear and Tear tasks take 30 s, Analyze Position tasks
take 15 s, Join Results takes 1 s, and Compress Results tasks take 15 s. We vary number
of tasks as 6 k, 12 k, and 23.4 k. We expect that the execution time increases
proportionally to the number of tasks growth. Figure 3-V shows that Spark scales well
on all executions as it runs faster than the expected. The difference between actual and
expected computations increases as the number of tasks increases. An execution for the
23.4 k tasks workload takes about 28 min to complete, whereas the expected time would
be 39.4 min (28% difference). Thus, Spark scales well for a real scientific workload.

4. Conclusion

In this paper, we analyzed Spark’s scalability when running a typical HPC scientific
workflow that processes large amounts of data, does multiple file writes in a shared file
system, and is implemented as black-box scientific programs linked through dataflows.
As mentioned in [Zhang et al. 2017], reusing existing codes avoids rewriting, which is
error prone. We use a real case-study workflow in Oil and Gas domain on a large HPC
cluster with 936-cores and a fast shared file system. We showed that Spark scales well,
even for a real workload. We found that the number of tasks does not significantly affect
its performance, but the task duration does. For multiple short tasks representing simple
scientific tasks with little computation, Spark does not scale well, whereas for long-

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

292

lasting scientific tasks, it does. Since long-lasting tasks are more common in scientific
workflows, using Spark to manage the dataflow between tasks with black-box scientific
application external calls does not harm its scalability. Altogether, in addition to its
large user community and easy APIs, its scalability encourages scientific workflow
developers to migrate their many-task parameter sweep workflows to Spark, without
requiring re-implementation of the complex linked scientific programs. As future work,
we plan to carry out more and deeper performance analyses to investigate load
balancing, memory utilization, and disk throughput during execution in different
scientific workloads.

Acknowledgements

This work was partially funded by CNPq, FAPERJ and Inria (MUSIC and SciDISC projects), EU H2020
Programme and MCTI/RNP-Brazil (HPC4E grant no. 689772), and performed (for P. Valduriez) in the
context of the Computational Biology Institute (www.ibc-montpellier.fr). The experiments were carried
out using the Inria Grid'5000 testbed (https://www.grid5000.fr).

References
Armbrust, M., Zaharia, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica,

I., Wendell, P., et al., (2015), "Scaling spark in the real world: performance and
usability", PVLDB, v. 8, n. 12, p. 1840–1843.

Atkinson, M., Gesing, S., Montagnat, J., Taylor, I., (2017), "Scientific workflows: past,
present and future", FGCS, v. 75, p. 216–227.

F. da Silva, R., Filgueira, R., Pietri, I., Jiang, M., Sakellariou, R., Deelman, E., (2017),
"A characterization of workflow management systems for extreme-scale
applications", FGCS, v. 75, p. 228–238.

GitHub. RFA Spark Repository. Available on: github.com/hpcdb/RFA-Spark.
Gittens, A., Devarakonda, A., Racah, E., Ringenburg, M., Gerhardt, L., Kottalam, J.,

Liu, J., Maschhoff, K., Canon, S., et al., (2016), "Matrix factorizations at scale: A
comparison of scientific data analytics in Spark and C+MPI using three case studies".
In: IEEE Int. Conf. on Big Data, p. 204–213

Oliveira, D., Boeres, C., Neto, A., Porto, F., (2015), "Avaliação da localidade de dados
intermediários na execução paralela de workflows bigdata". In: SBBD, p. 29–40

Özsu, M. T., Valduriez, P., (2011), Principles of distributed database systems. 3 ed.
New York, Springer.

Raicu, I., Foster, I. T., Zhao, Y., (2008), "Many-task computing for grids and
supercomputers". In: MTAGS, p. 1–11

Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., Wang, C., Reinwald, B., Özcan, F., (2015),
"Clash of the titans: MapReduce vs. Spark for large scale data analytics", PVLDB, v.
8, n. 13, p. 2110–2121.

Souza, R., Silva, V., Coutinho, A. L. G. A., Valduriez, P., Mattoso, M., (2016), "Online
input data reduction in scientific workflows". In: WORKS, p. 44–53

Zhang, Z., Barbary, K., Nothaft, F. A., Sparks, E. R., Zahn, O., Franklin, M. J.,
Patterson, D. A., Perlmutter, S., (2017), "Kira: processing astronomy imagery using
big data technology", IEEE Trans. Big Data, v. PP, n. 99, p. 1–14.

32nd SBBD – Short Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

293

