
Relational graph data management on the edge:
Grouping vertices’ neighborhood with Edge-k

Lucas C. Scabora1, Paulo H. Oliveira1, Daniel S. Kaster2,
Agma J. M. Traina1, Caetano Traina-Jr1

1Institute of Mathematics and Computer Sciences – University of São Paulo (USP)
São Carlos – SP – Brazil

2Department of Computer Science – University of Londrina (UEL)
Londrina – PR – Brazil

{lucascsb,pholiveira}@usp.br,dskaster@uel.br,{agma,caetano}@icmc.usp.br

Abstract. As the amount of data represented as graph grows, several frame-
works are employing relational databases to manage them. However, the exist-
ing solutions store graphs creating a row for each edge in an edge table. In this
paper, we propose Edge-k, a novel storage approach that combines additional
columns in the edges table, allowing to tune the number of edges stored in a
single row by taking into account the overall neighborhood of the vertices, thus
providing a better table organization. Compared to the existing approaches in
the literature, experiments reveal that our proposal was able to reach a speedup
of 66% over a representative real dataset and up to 57% in synthetic datasets
when processing Single Source Shortest Path queries. Hence, our solution ad-
vances the state of the art in the context of graph data management within rela-
tional databases systems.

1. Introduction
Complex networks are present everywhere, from communication infrastructures to social
networks and urban street organization [Barabási and Pósfai 2016]. These networks are
usually represented as graphs, in which the nodes are mapped as vertices and their rela-
tionships as edges. The amount of applications using graph structures to represent data
has increased significantly. Many of them focus on analyzing the characteristics of the
graphs, applying algorithms such as finding connected components, page rank and Single
Source Shortest Paths (SSSP) [Silva et al. 2016].

For example, consider a graph composed of researchers and their respective pub-
lications. The relationship between two authors is defined by their common publications,
i.e. one of them is the other’s coauthor. Suppose the weight w of the edge correspond-
ing to such relationship can be determined by 1 ÷ np, where np is the number of shared
publications between any pair of authors. In this case, 0 ≤ w ≤ 1, and weights close
to 0 indicate stronger relationships, whereas weights close to 1 indicate weaker relation-
ships. In this scenario, consider a query searching for a specific researcher’s collaborative
network, which aims at identifying not only its direct coauthors, but also the coauthors
of their coauthors and so on. To run such a query, which would allow the analysis of
the researcher’s influence on its study field, the SSSP algorithm can be employed. Given
those characteristics of the weights, a weight close to 0 could also be seen as a short

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

paper:171357

124

distance between authors, due to the large amount of shared publications. Conversely, a
weight close to 1 could be seen as a long distance between them, due to the small amount
of shared publications (or none at all). Hence, the SSSP algorithm can determine the
strongest connections among the authors starting at a specified author, since it is achieved
by identifying the minimal paths from that author to the other ones.

As the amount of applications grows, the volume of data also increases to the
point that it does not fit in main memory, compelling them to focus on I/O operations in
disks. Relational Database Management Systems (RDBMS) provide an infrastructure to
support graph data management with some useful features such as storage, data buffering,
index and optimizations. The main problem is that the Structured Query Language (SQL)
is not adequate to express graph related queries. To solve this problem, a number of
frameworks have been proposed. The FEM (Frontier, Expand and Merge) framework has
been proposed to translate analytical graph queries into SQL commands [Gao et al. 2011,
Gao et al. 2014]. This framework implements an SSSP query through tracking frontier
vertices and iteratively expanding them, merging the new elements with the set of visited
ones. The Grail framework [Fan et al. 2015], as well as its adaptation in the RDBMS Ver-
tica [Jindal et al. 2015], follows a similar approach, detailing query execution plans and
allowing query optimizations. However, both frameworks are limited to a single graph
representation, not exploring the query execution performance in alternative representa-
tions. Both frameworks employ one relation for the set of edges and another for the set
of vertices. The edges are organized as a list, each of them stored as a tuple in the table.
The vertex degree (i.e. number of neighbors) is the number of edges incident to it, thus,
in this representation, it determines the number of rows required to store the vertex.

In this paper we propose Edge-k, a novel and flexible strategy to store the neigh-
borhood of a vertex in a RDBMS, grouping a predefined number of edges in the same
entry. Particularly, since an entry is handled by the RDBMS as a table’s row, we aim at
reducing the overall number of rows required to store the graph while keeping the amount
of null values in the edge table as small as possible, avoiding to generate wide tables
and improving the performance of queries. Reducing the number of rows decreases the
amount of data blocks used by the RDBMS as less space is dedicated to row headers,
therefore minimizing the quantity of I/O operations. Furthermore, by grouping neighbor
vertices in the same row, Edge-k ensures that at least part of them will be contiguously
stored in disk, which can also contribute to achieve higher processing performance.

Regarding the aforementioned frameworks, we adapted the SSSP query to Edge-
k, which was used to evaluate both real and synthetic datasets. This paper focuses on the
SSSP algorithm because it is widely employed in many applications, such as discovering
indirect relationships in a social network and finding minimal paths to interesting places
in a city. The average query execution time revealed a strong correlation with the number
of data blocks required to store the graph data. Thus, decreasing the amount of blocks,
which is related to reducing both rows and null values, also speeds up queries. In the
synthetic datasets, we achieved gains in query time from 46% to 57%. On the other hand,
the real dataset allowed a gain of up to 66% regarding the first 2 iterations of the SSSP
algorithm, whereas for 4 iterations the gain achieved 49%.

The remainder of this paper is organized as follows. Section 2 describes the related
work, regarding existing approaches for graph data management using RDBMS. Section 3

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

125

details the proposed Edge-k storage approach. We provide an experimental analysis and
discussion of our proposal in Section 4. Finally, Section 5 presents the conclusions.

2. Related Work

Existing storage schemas for graph data management employing RDBMS include: triple
store schema; binary tables; and n-ary tables [Levandoski and Mokbel 2009]. The triple
store schema organizes the data into a triple <subject, property, object>, in which sub-
ject refers to an entity instance (e.g. the identifier of a vertex or edge) and property
represents an attribute of the entity, whose value is denoted by object. Considering an
entity-relationship model, each attribute and relationship of an entity is described by prop-
erty [Neumann and Weikum 2010]. Grouping each distinct property into a specific table
corresponds to the binary representation, in which the table has only two columns: entity
identifier and property value. Including other properties as new columns in the same table
leads to the n-ary representation, and a special case in which all properties are assigned to
the same table results in a property table [Levandoski and Mokbel 2009].

The disadvantage of placing every property into a distinct column is that it in-
creases the data sparsity due to the heterogeneity in a entity set. In order to deal with
this issue, DB2RDF [Bornea et al. 2013] proposed to aggregate sets of properties in the
same column. DB2RDF defines vertex rows with a maximum of k properties, each rep-
resented by a pair of property and value columns. If there are more than k properties,
they are split in several rows. This approach reduces the space required to store the
dataset because it requires a smaller number of physical columns to store properties.
SQLGraph [Sun et al. 2015] extended DB2RDF employing the same approach in non-
relational databases. However, both works focused only on associating vertices with their
properties, not dealing with relationships among vertices.

An alternative way to represent adjacency lists employs a column of array type
[Chen 2013]. In this approach, each row in the table stores all the neighborhood of a ver-
tex in a single column. Although this representation disrespects the first normal form, the
authors state that it is well suited for sparse graphs since it avoids null values. However,
such proposal focuses on scenarios in which all vertices have a small degree. Further-
more, the authors did not explore the scenario in which the row size is bigger than the
data block size. The same idea of splitting rows adopted in DB2RDF and SQLGraph can
be a solution here, but the insertion of new neighbors of a vertex needs yet to be analyzed.

Our work draws inspiration also from the edge sharding approach introduced by
the GraphChi framework [Kyrola et al. 2012], a disk-based system for computing graph
algorithms efficiently. GraphChi splits its data into intervals, namely shards, in which the
storage of edges is sorted by their source. The framework requires that each shard fits
entirely in memory. However, GraphChi does not follow an RDBMS-based approach,
which our proposal employs. Moreover, regarding a database system, these shards can be
analogously seen as the data blocks in which the tables are stored.

Therefore, a similar approach can be used to improve RDBMS-based graph pro-
cessing by grouping the neighborhood of a vertex in the edge table according to dis-
tinct values of k, which is a feature that neither DB2RDF nor SQLGraph provide for an
RDBMS. This approach is the basis of Edge-k, which is presented in the next section.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

126

3. The Edge-k Table Organization
A graph G is denoted as G = {V,E}, where V is a set of |V | vertices and E is a set of
|E| edges, where both vertices and edges can have properties. Our work deals with the
representation of edges. In the context of the Relational Model, on which our proposal is
based on, edges and vertices are mapped into two distinct relations. Each vertex in V has
a unique identifier attribute (id) and as many attributes as needed for the properties. An
edge in E is defined as an ordered pair �src, des�, where src is the vertex source id and
des is the destination vertex id. Additional information for the edges can be expressed
as extra attributes in the relation, allowing to further detail the relationships among the
vertices. For example, an edge is defined as �src, des, weight� when storing the measure
weight of the relationship between src and des vertices.

Our novel technique Edge-k implements the vertex and edge relations as regu-
lar tables, and groups multiple destinations of a vertex in a same row in the edge ta-
ble, up to a defined maximum amount of k destinations per row. Thus, a tuple in the
edge table can store up to k edges starting from the same source vertex. If the edges
have a property assigned, an additional column is included for each distinct destina-
tion vertex. Considering that every edge has a weight, the edge table definition be-
comes Ek = �src, des1, w1, ..., desk, wk�, where wi is the weight between src and desi,
1 ≤ i ≤ k. This simple, but effective organization reduces the table overhead with tu-
ple headers, as well as stores contiguously adjustable pieces of the vertex neighborhood,
enabling to reduce storage space, number of disk accesses and query response time.

null null

Figure 1. Comparison between the conventional and proposed approaches.

Figure 1 illustrates the proposed technique for a directed graph with a source ver-
tex v0 and a neighborhood of size n and each edge has a weigh w as an assigned property.
The table at the left shows the conventional approach, which stores one destination per
row. On the right is the proposed approach, which allows to store up to k destinations in
the same row. For values of n smaller than k, all the neighborhood fits in the same row
and the remaining values are filled with null values. If n and k are equal, which is the
ideal case, a single completely occupied row contains the whole vertex neighborhood. For
values of n larger than k, the neighborhood is stored in groups of size k. The last group
may have less than k neighbors and thus the row is completed with null values. In the
figure, the number of neighbors around vertex v0 is divisible by k, fitting in two complete
rows. On the other hand, the source vertex v2 requires null values to complete its row.

By adopting an edge table that groups k destination vertices in a single row, we
have a reduction of the number of rows at the cost of allowing null values. Therefore, the
efficiency of our proposal is related to the parameter k, which is a function of the number

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

127

of rows and the exceeding space of the edge table. Minimizing both quantities reduces
the number of tuples required to the edge table be stored and, consequently, improves
query performance. However, our proposal introduces an additional cost when performing
individual update operations. This occurs because inserting an edge requires searching an
empty destination vertex on the Edge-k table before inserting it. As such operations are
less frequent than the search operations, its impact on the overall query load is small.

3.1. Estimation of the number of rows and null values

This section presents measures useful for the Edge-k method. They are calculated based
on the value k chosen and on the edge attributes. In Equation 1, for each vertex v, the
amount of rows is defined as the smallest integer value that is greater than its total neigh-
borhood size (degreev) divided by the defined value of k. Then, by summing the number
of rows for each v ∈ V , we obtained the total amount (ηrows) of edge table’s rows.

ηrows =
�

v∈V

�
degreev

k

�
(1)

In Equation 2, degreev mod k obtains the number of remaining neighbors that
do not fill a complete row in the edge table. By subtracting that number from k, and
employing the modulo operator once again, we determine number of null values for each
vertex. Finally, by summing them, the total amount of null values (ηnulls) is obtained.

ηnulls =
�

v∈V
(k − (degreev mod k)) mod k (2)

The optimal edge storage approach of a graph in an RDBMS table would use a
single row to store the neighborhood of each vertex. In this case, both the row over-
head imposed by the row header (which is necessary to store internal control data) and
the space wasted due to null values are minimal. However, such organization would be
properly represented only for the particular case in which every vertex has a fixed number
of neighbors. This premise is not valid for most complex networks. As aforementioned,
there are works that suggest employing RDBMS extensions, such as arrays. However,
such approaches do not follow the Relational Model anymore, thus loosing robustness.
Our work, on the other hand, strictly follows the Relational Model, employing a config-
urable control of the wasted space via the parameter k. The exceeding space (exceeding)
occupied by the Edge-k table is given by Equation 3.

exceeding = (ηnulls ∗ null size) + (ηrows − |Vneigh|) ∗ (size(vid) + overhead) (3)

where Vneigh ⊆ V is the subset of vertices of the graph containing a neighborhood and
size(vid), overhead and null size are, respectively, the sizes in bytes of the vertex id, of
the row overhead and of the storage of a null destination. This equation considers space
occupied by null values plus the wasted space occupied by vertices vid without a neigh-
borhood. The null size depends on the implementation. If an RDBMS does not compact
null values, it will reserve the standard size in bytes of the corresponding attribute. In

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

128

such a case, null size = size(vid). However, RDBMS usually apply techniques to save
space when storing null values, and the real size varies according to the product.

3.2. Adaptation of Single Source Shortest Path (SSSP) procedure

A path p = v0
p� vn is a sequence of non-repeating edges �v0, v1�, �v1, v2�, . . . , �vn−1, vn�,

in which there is one source vertex v0 and one destination vertex vn. A common additional
attribute in the set of edges is a real-valued weight w, which defines a numerical measure
between two adjacent edges in a path. The weight of a path is determined by the sum
of the weigths of its constituent edges. The Single Source Shortest Path (SSSP) problem
consists of finding the shortest path from a given source vertex v0 to each vertex vi ∈ V ,
that is, the paths v0

p� vi of minimal weight. To calculate SSSP in Edge-k, we adapted the
corresponding procedure of the existing frameworks. Our implementation is illustrated in
Figure 2. In short, the procedure iteratively joins a temporary table containing the weight
of the current shortest path of every discovered vertex with the edge table, to visit new
vertices and expand the frontier.

null null

Figure 2. General idea of the SSSP procedure in our proposal.

The procedure is as follows. First, a temporary table result is created to register all
visited vertices. For each of them, it keeps track of the unique identifier (id), the minimal
distance to the path source vertex (dist) and the previous vertex (prev) in the current
shortest path, allowing to identify which edges compound such path. The procedure starts
by inserting the source vertex v0 in table result, which has a distance of 0 and no previous
vertex (i.e. -1). Thereafter, result is joined with the edge table to expand the neighborhood
of result’s vertices and update the shortest path of every destination vertex, producing a
new temporary table (called table newResult). To update the distances in each iteration,
the procedure sums the accumulated distance (dist in table result) and the respective
distance to the next neighboring vertex (recall that columns w1 . . . wk of the edge table
store the distances from src to des1 . . . desk in edge Ek).

Regarding the example in Figure 2 (which corresponds to the graph of Figure 1),
after first iteration the distances from v0 to v1 and from v0 to v2 are, respectively, (0+3) and
(0 + 2). The procedure aims at minimizing such distances, prioritizing the minimal paths
discovered so far. Therefore, in second iteration, the weight of path v0

p� v1 is updated
to 2.5, through the expansion of vertex v2, and so on. If tables result and newResult
are equal, then all the shortest paths have already been found and the procedure finishes.
Otherwise, table result is replaced by newResult and another iteration is executed.

Let’s look at the major competitors of Edge-k, in which the key difference is in
joining table result with the edge table. In the existing frameworks, the edge table stores

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

129

only one destination per row. Therefore, when joining the tables result and edge, the
procedure just executes an ordinary join operation. In Edge-k, on the other hand, for any
value of k such join operation is accompanied by an unnesting operation, which consists
of transforming the multiple des1 . . . desk columns into separate rows.

4. Experimental Results
4.1. Setup
We evaluate our Edge-k method on both real and synthetic datasets, and due to space
limitations we present the results on representative datasets. The real dataset was ex-
tracted from the Digital Bibliography & Library Project1 (DBLP), containing information
about authors and their publications. We modeled the set of authors as vertices and their
relationships as edges, measuring the collaboration among them with a weight value.
To analyze the impact of varying the number of vertices in the graph and the overall
rate of neighboring vertices, we employed two synthetic graphs, generated through the
Networkx2 framework. The first one, called Newman-Watts-Strogatz dataset, models a
small-world graph. Initially, it creates one ring including all |V | vertices of the graph.
Then, each vertex in the ring may be randomly connected to other X vertices, which cre-
ates shortcuts between vertices in the ring structure. The second synthetic graph, named
Erdos-Renyi dataset, is defined by assigning edges between pairs of vertices with a prob-
ability p. Parameters |V |, X and p are provided by the user.

Table 1 details the characteristics of all datasets, showing the number of vertices
and edges, as well as the minimum (min), maximum (max) and average (avg) vertex de-
grees. For the Newman-Watts-Strogatz graphs, we fixed X to 200 shortcuts and varied
the number of vertices |V |. Notice that their vertex degree size do not display a significant
change. For the Erdos-Renyi graphs, we fixed |V | and varied the probability p of edge
creation with the values 1%, 3% and 5%. In this case, the vertex degree varies signifi-
cantly, allowing the validation of more distinct scenarios. The experiments were run in
the RDBMS PostgreSQL 9.5.6. We used a machine equipped with an Intel R� CoreTM i7-
2600 @ 3.40GHz processor, 8GB of DDR3 1333MHz RAM memory, two SATA 6Gb/s
7200RPM hard disks set up in RAID 0, and Linux operating system Fedora release 25.

Table 1. Characteristics of the real and synthetic datasets.

Measure DBLP Newman-Watts-Strogatz Erdos-Renyi
X = 200 X = 200 X = 200 p = 1% p = 3% p = 5%

|V | 1,909,226 9,000 18,000 27,000 9,000 9,000 9,000
|E| 19,194,624 1,979,410 3,959,970 5,940,340 810,570 2,428,600 4,048,600

min degree 1 203 204 205 56 214 369
max degree 2100 245 238 247 126 334 536
avg degree 10.05 220.12 219.99 220.01 90.06 269.84 449.84

4.2. Dataset Size Reduction
This section presents the dataset size reduction achieved when employing Edge-k to group
neighboring vertices in a same row in the edge table. Consequently, the overall amount

1Collected at March 16th, 2017 from http://dblp.uni-trier.de/xml/
2https://github.com/networkx/networkx

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

130

of row overhead space is decreased, along with the number of times that each source
vertex is stored. Figure 3 shows the size reduction achieved for each dataset. Considering
the results for the DBLP dataset shown in Figure 3a, we observe a reduction of 67% at
k = 10, this value of k coincides with the average degree as shown in Table 1. As k
increases, the overall reduction stabilizes in approximately 70% (k = 20 and beyond).

� �� �� �� �� ��

����������

���

���

���

���

���

���

���

���

�
�
�
�
��
�
�
��
��
��
�
��
�
�
�

���

���

����

� �� �� �� ��

����������

�

��

���

���

���

���

���

�
�
�
�
��
�
�
��
��
��
�
��
�
�
�

����������

�������������

������������

������������

� �� �� �� ��

����������

�

��

��

��

��

���

���

���

���

���

�
�
�
�
��
�
�
��
��
��
�
��
�
�
�

����������

�������

�������

�������

(a) DBLP. (b) Newman-Watts-Strogatz. (c) Erdos-Renyi.

Figure 3. Size reduction of the edge table achieved in each dataset as k varies.

Regarding the synthetic datasets, both Figure 3b and 3c depict a similar behavior.
Regardless of varying the number of vertices (in the Newman-Watts-Strogatz graph) or
the vertex degree (in the Erdos-Renyi graph), the reduction achieved for k ≥ 30 ranges
from 78% to 80%. As explained by Equation 1, the sharp reduction in the dataset size was
analogous to the decrease of ηrows, for the same range of k values. It is worth noticing the
potential of our approach in terms of relation size reduction. This is especially evident
when k varies from 1 to 10, where a drastic reduction occurs in the size of the edge table
— achieving 67% already for the first values. For greater values of k, the neighbors of a
vertex are able to be stored in less rows — most of them eventually fit in one row. In this
scenario, as k grows, the number of null values stored in the edge table also increases,
since the table becomes larger than required. As null values occupy an irrelevant space
in the RDBMS PostgreSQL (apart from the bitmap structure used to keep track of null
values, if any, in each row), having more null values does not harm the storage needs,
which is why the size reduction remains stable even for greater values of k.

4.3. SSSP Query Processing Time

To analyze the impact of the dataset size reduction on queries, this section focuses on the
SSSP query processing times. For each dataset, we defined a query whose starting point
was the vertex having the highest degree — the largest number of neighbors. Each query
was executed 30 times and had their execution time measured. Thereafter, we obtained
the average execution time, after discarding 10% of the shortest and 10% of the longest
times so as to rule out outliers. For the DBLP dataset, we analyzed the average execution
times from 2 to 5 iterations of the SSSP algorithm — i.e. the number of times the tables
edge and result are joined to compute the minimal paths, as described in Section 3.2. The
SSSP query processing time was not evaluated for the first iteration alone, since the same
outcome could be obtained by simply querying the edge table, filtering it by the source
vertex, rather than performing join operations. For the synthetic datasets (from the starting

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

131

point we defined), a maximum of 4 iterations was enough to visit all vertices in the graphs.
Therefore, we executed the SSSP query on them without limiting the iterations.

Figure 4 presents the average SSSP query time when varying k for two iterations
on the DBLP graph (Figure4a), for the Newman-Watts-Strogatz graph containing 27,000
vertices (Figure4b) and for the Erdos-Renyi graph with probability p = 1% (Figure4c).
The query processing time reduction observed in Figure 4a achieved 61% for the average
degree (i.e. for k = 10, as shown in Table 1), reaching 66% for k = 20 and remaining
stable after this point. It is worth noticing that this behavior is analogous to the dataset size
reduction. Figure 4b shows a similar behavior, presenting an initial reduction of 56% at
k = 30 and stabilizing after this value with slight variations. Particularly, such variations
range from 51% to 57% for values of k between 30 and 247, i.e. up to the maximum
degree of the dataset, as presented in Table 1. This same behavior can be observed in
Figure 4c, and in the other evaluated synthetic datasets, in which the reduction was of
45% for k = 20 and there were small variations ranging from 42% to 46% for values of k
between 20 and 126. The observed peaks of Figures 4a to 4c correspond to the oscillations
in the number of nulls (ηnulls from Equation 2) while evaluating different values of k.

� �� �� �� �� ��

����������

�

�

�

�

�

�

�

��

��

��

�
�
�
��
�
�
��
��

�
��
�
�

���

���

����

� �� �� ��� ���

����������

��

��

��

��

��

��

��

��

��

�
�
�
��
�
�
��
��

�
��
�
�

��� ���

���

����

� �� �� �� ���

����������

���

���

���

���

���

���

���

���

�
�
�
��
�
�
��
��

�
��
�
�

���

���
���

����

(a) DBLP with (b) Newman-Watts-Strogatz (c) Erdos-Renyi
2 iterations. with |V | = 27, 000. with p = 1%.

Figure 4. SSSP query processing time in three scenarios for varying k in Edge-k .

According to Equation 1, the ideal cases occur when the overall degrees are divisi-
ble by k, which is when the average number of null values is smaller in the edge table. We
can observe in Figure 4b that the best value between the minimum and maximum degrees
is k = 228. However, that is not the single good value, since k = 116 and k = 76 also
provide equivalent reductions in query processing time. The fact of several k values being
appropriate is explained by the modulo operator in Equation 2: the number of null values
rises — as does the query processing time — and falls at the next well-suited value of k
— along with the query processing time as well —, by which the overall neighborhood is
divisible. That is, minimizing both ηrows and ηnulls (Equations 1 to 3) is important when
analyzing a proper value for k, which we empirically evaluated in the experiments.

Additional experiments not presented in this paper were performed for values of
k greater than the maximum degree of the graph. However, we found that beyond this
point the average query time only increases. This is because the amount of unnecessary
columns in edge table keeps rising, adding more validations to the unnesting operation.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

132

The adapted SSSP algorithm performs a loop through each one of the k destination ver-
tices. Thus, assigning a value too large for k affects the overall performance.

As previously mentioned, the dataset size reduction is analogous to the average
query processing time reduction, which indicates a correlation between them. To mea-
sure it, we calculated the Pearson coefficient between the amount of data blocks of edge
table, while varying its k value, and the average elapsed time of SSSP queries, in which
values closer to 1 imply a positive linear correlation. In the DBLP dataset, the coefficient
obtained was 0.976 for 2 iterations and 0.827 for 5 iterations. In the synthetic datasets, the
coefficient obtained was at least 0.943. Accordingly, reducing the dataset size (focusing
on the edge table) also lowers the query processing time. This corresponds to the expected
result, since reducing the dataset size should also decreases the amount of data blocks in
the disk, minimizing the number of I/O operations and optimizing query processing.

4.4. Scalability Evaluation

We carried out another analysis to identify the highest reduction achieved in the SSSP
query processing time varying: (i) the number of iterations performed over the DBLP
graph; and (ii) the distinct parameter value used to generate the synthetic graphs. Figure 5
summarizes the highest query processing time reduction achieved over the DBLP dataset
for each number of iterations employed. In the figure we can observe that the highest re-
duction has been achieved with 2 iterations, and as the number of iterations increases, the
reduction decreases. This behavior shows that, as the tables edge and result are repeatedly
joined, the query performance tends to degrade in both storage approaches. Nevertheless,
solutions that employ too many joins are not usually well suited for RDBMS. For exam-
ple, considering our real dataset, performing more than 5 iterations means looking for
collaborations spanning at least 5 authors, which tends to be less frequent. Hence, in
terms of a real application, it would not be particularly interesting to keep running the
SSSP procedure any further than the number of iterations we already ran for.

� � � �

��������������������

�

��

��

��

��

��

��

��

��

��

���

�
�
�
�
�
��
�
�
��
�
� ���

���

���
���

��������������������������

Figure 5. Highest query processing time reduction achieved, thought Edge-k
method, for each number of iterations over the DBLP dataset.

Considering the synthetic datasets, Figure 6 shows the highest query processing
time reductions according to the parameters considered. By increasing the number of ver-
tices |V | in the Newman-Watts-Strogatz graph, as shown in Figure 6a, query performance
also increases, reaching up to 57% of query processing time reduction for the greatest
number of vertices |V | = 27,000. Specifically, such larger reduction was achieved when

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

133

k = 76, k = 116 or k = 228, as previously discussed regarding Figure 4b. Figure 6b de-
picts a similar behavior: by increasing the probability p of edge creation — which also
changes the minimal, maximum and average degrees —, the corresponding query pro-
cessing time reduction also increases. Both figures spot that our proposal provides even
better results as the volume of data grows. That is, graphs that have more rows in the edge
table (and, consequently, a higher amount of repeated source vertex in the conventional
implementation) allow a higher reduction in both query processing time dataset size.

����� ������ ������

������������������

�

��

��

��

��

��

��

��

��

��

���

�
�
�
�
�
��
�
�
��
�
�

�����
����� �����

��������������������������

�� �� ��

�����������������������������

�

��

��

��

��

��

��

��

��

��

���

�
�
�
�
�
��
�
�
��
�
�

�����
����� �����

��������������������������

(a) Newman-Watts-Strogatz. (b) Erdos-Renyi.

Figure 6. Highest query processing time reduction achieved, thought Edge-k
method, for each parameter of Table 1 over the synthetic datasets.

The experimental results show that, regardless of the number of vertices and of
resulting vertex degrees, it is possible to accomplish good performance improvements.
Considering the number of iterations performed by the SSSP procedure, the reduction in
query processing time decreases as the number of iterations increases, as already seen in
various RBDMS-based solutions involving too many join operations. However, regarding
the real scenario evaluated, an indirect relationship between two authors having more than
three coauthors in the path joining them (i.e. requiring more than 5 iterations) is less likely
to occur, thus irrelevant for our experimental analyses.

5. Conclusion
Graph data stored in RDBMS are growing in volume and quantity, requiring efficient
management applications to properly deal with them. Despite the several ways to repre-
sent graph data in RDBMS, most of the frameworks focus on a single approach to store
the edges of a graph. In this context, we have proposed Edge-k, a storage approach for
the edge table of a graph, which consists of grouping at least part of the neighborhood of
each vertex in a same row. This work has been conducted based on the assumption that
this approach is able to reduce the dataset size and, consequently, the processing time of
queries over the edge table. In fact, regarding query processing time, the experimental
results show a reduction around 66% on real and 57% on synthetic datasets, which high-
light the impact of our proposal. Although we have evaluated our storage approach for
SSSP queries, many other graph applications benefit from it as well.

Due to space limitations, we focused on a frequent query type implemented by
the general graph data management frameworks in relational databases. Nonetheless,
this work can be extended in several directions. Firstly, a future work will explore the

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

134

use of index structures in our storage approach, as well as different applications in other
scenarios. Secondly, our approach could be extended to include edges connected to three
or more vertices at a time, that is, to hypergraphs. Lastly, other databases not necessarily
adopting the Relational Model (i.e. NoSQL databases) will be analyzed, and we will
compare our proposal to the Neo4j NoSQL datastore.

Acknowledgments This research was supported, in part, by CAPES, CNPq and
FAPESP. The authors would like to thank Gabriel Spadon and Willian D. Oliveira for
their contribution on the paper and the server infrastructure provided by FAPESP (grant
project 2014/26678-6).

References
Barabási, A.-L. and Pósfai, M. (2016). Network science. Cambridge University Press.

Bornea, M. A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P., Udrea, O.,
and Bhattacharjee, B. (2013). Building an efficient rdf store over a relational database.
In Proceedings of the 2013 SIGMOD, pages 121–132, New York, NY, USA. ACM.

Chen, R. (2013). Managing massive graphs in relational DBMS. In 2013 International
Conference on Big Data, pages 1–8, Santa Clara, CA, USA. IEEE.

Fan, J., Raj, A. G. S., and Patel, J. M. (2015). The case against specialized graph analytics
engines. In Proceeding of the 2015 CIDR, Asilomar, CA, USA. Online Proceedings.

Gao, J., Jin, R., Zhou, J., Yu, J. X., Jiang, X., and Wang, T. (2011). Relational approach
for shortest path discovery over large graphs. PVLDB Endowment, 5(4):358–369.

Gao, J., Zhou, J., Yu, J. X., and Wang, T. (2014). Shortest path computing in relational
DBMSs. IEEE Transactions on Knowledge and Data Engineering, 26(4):997–1011.

Jindal, A., Madden, S., Castellanos, M., and Hsu, M. (2015). Graph analytics using
vertica relational database. In International Conference on Big Data, pages 1191–
1200. IEEE.

Kyrola, A., Blelloch, G., and Guestrin, C. (2012). Graphchi: Large-scale graph computa-
tion on just a pc. In Proceedings of the 10th Conference on Operating Systems Design
and Implementation, pages 31–46, Berkeley, CA, USA. USENIX Association.

Levandoski, J. J. and Mokbel, M. F. (2009). RDF data-centric storage. In 2009 Interna-
tional Conference on Web Services, pages 911–918, Los Angeles, CA, USA. IEEE.

Neumann, T. and Weikum, G. (2010). The RDF-3X engine for scalable management of
RDF data. The VLDB Journal, 19(1):91–113.

Silva, D. N. R. D., Wehmuth, K., Osthoff, C., Appel, A. P., and Ziviani, A. (2016). Análise
de desempenho de plataformas de processamento de grafos. In 31o Simpósio Brasileiro
de Banco de Dados, SBBD, pages 16–27, Salvador, BH, Brasil. SBC.

Sun, W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., and Xie, G. (2015). Sql-
graph: An efficient relational-based property graph store. In Proceedings of the 2015
SIGMOD, pages 1887–1901, New York, NY, USA. ACM.

32nd SBBD – Full Papers – ISSN 2316-5170 October 2-5, 2017 – Uberlândia, MG, Brazil

135

